CRYSTAL STRUCTURES OF LARGE-VOLUME COMMERCIAL PHARMACEUTICALS

J. A. Kaduk North Central College, Naperville IL Illinois Institute of Technology, Chicago IL Poly Crystallography Inc., Naperville IL

Z. R. Butler North Central College, Naperville IL

A. M. Gindhart and T. N. Blanton ICDD, Newtown Square PA

As part of a continuing project, the challenging room-temperature crystal structures of four commercial pharmaceutical APIs have been solved by Monte Carlo simulated annealing techniques using synchrotron X-ray powder diffraction data (11-BM at APS), and optimized using density functional techniques. **Bisoprolol fumarate**, $(C_{18}H_{33}NO_4)_2(C_4H_2O_4)$, crystallizes in $P\bar{I}$, with a =8.16570(5), b = 8.51639(12), c = 16.75179(18) Å, $\alpha = 89.142(1), \beta = 78.155(1), \gamma = 81.763(1)^{\circ}, V$ = 1128.265(10) Å³, and Z = 1. The structure was difficult to solve because the two ends of the bisoprolol cation are similar but not identical. Hyoscyamine sulfate monohydrate, $(C_{17}H_{24}NO_3)_2(SO_4)(H_2O)$, (generally described as a dihydrate) crystallizes in P2, with a = 6.60196(2), b = 12.95496(3), c = 20.93090(8) Å, $\beta = 94.8839(2)^{\circ}, V = 1783.680(5)$ Å³, and Z = 2. The multiple fragments led to a low success rate. Atropine sulfate monohydrate, $(C_{17}H_{24}NO_3)_2(SO_4)(H_2O)$, (racemic hyoscyamine) crystallizes in P_{2}/n with a = 19.2948(5), b = 6.9749(2), c = 26.9036(5) Å, $\beta = 94.215(2)^{\circ}$, V = 3610.86(9) Å³, and Z = 4. The success rate of solution using DASH was only 1%, and required Mogul Distribution Bias and {010} preferred orientation. Despite being apparently orthorhombic **cefprozil monohydrate**, $C_{18}H_{19}N_3O_5S(H_2O)$, crystallizes in P2, with a = 11.26503(5), $b = 11.34017(4), c = 14.72628(10) \text{ Å}, \beta = 90.1249(4)^{\circ}, V = 1881.24(2) \text{ Å}^3, \text{ and } Z = 4.$ DFT calculations suggest that the carboxylic acid proton on one (but not the other) of the two independent cefprozil molecules is transferred to an amino group, forming a salt. This suggestion needs to be confirmed by spectroscopic experiments and calculations of the vibrational spectrum. Hydrogen bonding is important in all these crystal structures.