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Background

Many pharmaceuticals exist in both hydrated and anhydrous forms.

The physicochemical, mechanical, processing, and biological 

properties of hydrates may differ significantly from those of the 

corresponding anhydrates.

Understanding of dehydration behavior is required for process control 

and predicting stability of drug substance and drug product.  

Variable hydrates present  relative complex dehydration behavior 

compared  to stochiometrirc  hydrates.



Compound in Study

Form B, a hydrated form of this free base 

was chosen for development. 

Theoretical monohydrate 4.6%wt

Classified as a variable, or non-

stoichiometric hydrate 

7-methoxy-1-methyl-5-(4-

(trifluoromethyl)phenyl)-

[1,2,4]triazolo[4,3-a]quinolin-4-

amine 

(GSK241572)

stoichiometric hydrate 

Displays complex dehydration behavior 

pre and post size reduction



Objectives

Characterize  dehydration of the system pre- and post-micronization

– Various techniques were utilized including DSC, TGA, HSM, GVS, 

VT-PXRD etc. 

Study dehydration mechanism by the following approaches

– Solid state kinetics modeling – Solid state kinetics modeling 

– Rietveld analysis

– Crystal structural analysis



Scanning Electron Microscopy
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DSC/TGA
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Distinct dehydration processes observed between non-micronized and 

micronized samples.



Hot-Stage Microscopy
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NETZSCH Thermokinetics       isothermal dehydration
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Equilibrated at 40% RH, 

upon a step to 0% RH, 
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Micronized

upon a step to 0% RH, 

the dehydration was 

monitored at 25 ºC. 

Drastically different behavior displayed with regards to the loss of 

water content over time. The rate of loss of non-micronized material 

is slower by ~ two orders of magnitude. 



GVS Isotherms

exchange of 

lattice (channel) 

water

GVS isotherms (25°C) for the interaction of water with micronized and 
non-micronized FormB.  

primarily surface 

sorption/desorption 



NETZSCH Thermokinetics       241572 unmic dehydration by GVS
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NETZSCH Thermokinetics       241572 mic dehydration by GVS
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Summary so far….

DSC, TGA, HSM, and GVS data showed distinct dehydration process 

between non-micronized and micronized materials.

Kinetics modeling on dehydration showed 

– The non-micronized material exhibits a two-step dehydration 

process where a diffusion step is followed by a 2nd order step. The process where a diffusion step is followed by a 2nd order step. The 

diffusion step is the rate limiting step based on that its dehydration 

activation energy is ~22 times higher than the 2nd step.

– The micronized material follows a simple one-step process (2nd

order)

PXRD analysis will be discussed next to rationalize results.



Crystallographic Data

______________________________________________________________________ 

Moiety formula C19H15F3N4O⋅H2O 

Crystal system Triclinic 

Temperature 150(2) K 

Space group P1 

Unit cell dimensions a = 8.473(6) Å α= 102.09(4)° 

 b = 12.542(7) Å β= 102.70(5)° 

 c = 17.476(9) Å γ = 94.86(8)° 

Volume 1754.8(18) Å3 

Z 4 

Density (calculated) 1.478 Mg/m3 Density (calculated) 1.478 Mg/m  
______________________________________________________________________ 



PXRD
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View down a-axis

Reflection Analysis – Non-Micronized
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Water channels

along a-axis
a

b

Reflection
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along a-axis

c

Schematic drawing showing orientation of a non-micronized particle in 

x-ray sample holder



VT-PXRD – Non-Micronized
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VT-PXRD – Micronized
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VT-PXRD – Micronized
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Crystal Lattice Change upon Thermal Dehydration

Rietveld Analysis (HighScore Plus) 

  a / Å b / Å c / Å α / ° β / ° γ / ° V / Å3 
V %change  

mic INT 8.623 12.636 17.358 102.25 103.07 94.47 1785 0.00% 

mic 50C 8.714 12.658 17.138 103.14 102.74 94.32 1780 -0.26% 

mic 70C 8.750 12.667 17.036 103.98 102.72 93.74 1773 -0.63% 

mic 90C 8.781 12.678 17.004 104.25 102.87 93.52 1775 -0.54% 

mic 100C 8.798 12.685 17.006 104.28 102.92 93.5 1779 -0.31% mic 100C 8.798 12.685 17.006 104.28 102.92 93.5 1779 -0.31% 

                  

non-mic INT 8.508 12.658 17.346 101.93 102.46 95.34 1766 0.00% 

non-mic 50C 8.552 12.745 17.281 101.84 101.62 96.95 1776 0.57% 

non-mic 70C 8.589 12.817 17.256 102.00 101.44 97.37 1793 1.50% 

non-mic 90C 8.630 12.833 17.222 102.11 101.55 97.14 1800 1.90% 

non-mic 100C 8.583 12.838 17.207 102.09 101.68 97.30 1787 1.19% 

 



Change in Cell Volume upon Thermal Dehydration
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Slip Planes

A. (0 0 1) face (Eatt = -28.3 kcal/mol), 

showing lack of egress channels for 

water 

B. (0 1 0) face (Eatt = -75.4 kcal/mol), 

C. (1 0 -1) face (Eatt = -77.6 kcal/mol),

both showing egress channels for water

A

both showing egress channels for water

B C

Calculated using the COMPASS forcefield



Conclusions

The drastic change in dehydration behavior of the hydrate after 

micronization is mainly due to 

– Breakage of water channels through longest dimension (a-axis) 

�shorten water travel length

– Cleavage of several crystal faces that have low attachment energy 

� create more channels for water to escape

PXRD analyses provide insight into the change of dehydration 

behavior. 
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