VÅNTEC-500 Area Detector for Pharmaceutical XRD

Bob He

Bruker AXS

Bruke

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

XRD² for Pharmaceutical: Reflection System (CS)

Bruker Confidential

18.05.2011

XRD² for Pharmaceutical: Reflection & Transmission (HTS)

US Patent #7,242,745

Bruker Confidential

18.05.2011

XRD²: Innovation and Development

The most dramatic development in XRD² happens in three critical components and data evaluation algorithms:

- Source: required radiation energy, focal spot size and intensity.
- Optics: select wavelength, beam profile and divergence.
- Detector: collect 2D pattern with correct intensity and position.
- Data evaluation Algorithm: Diffraction Vector Approach.

X-ray Source for XRD²: Incoatec Microsource $(I\mu S)^{TM}$

- High brilliance
- Low energy: 30 W
- Air-cooled
- Spot size < 100 µm</p>
- Montel mirrow

IµS & VÅNTEC-2000 vs. Classic Set-up Corundum Comparison

Single 40mm Göbel Mirror,

45kV, 40mA,

0.3mm collimator

total counts: 78K

ΙμS & VÅNTEC-2000

45kV, 0.650mA,

0.3mm snout

total counts: 1235K

Bruker Confidential

XRD²: Choice of Detectors Sensitivity vs. Count Rate

Detective Quantum Efficiency (DQE):

• The DQE is a parameter defined as the square of the ratio of the output and input signal-to-nose ratios (SNR).

$$DQE = \left(\frac{(S/N)_{out}}{(S/N)_{in}}\right)^2$$

 The DQE of a real detector is less than 100% because not every incident x-ray photon is detected, and because there is always some detector noise.

■ MiKroGap[™] has the best overall performance.

Detector Technology from MWPC to MikroGap[™]

- MikroGap[™] technology with resistive anode:
 - shortens drift time of ions
 - fast electrons induce charge on readout strips
- Adjusted surface resistance (10⁵ - 10⁷ Ω/ area):
 - high enough to limit discharges
 - low enough to support high count rates

VÅNTEC-500 – Outperforms all previous gaseous detectors

Similar to Hi-Star (MWPC) detector:

- High sensitivity: 80% DQE (detection quantum efficiency) at 8.04 keV radiation
- Energy range: 3-15 keV (good for Cu, Co, Fe and Cr X-ray sources, not recommended for Mo)
- Energy resolution (ΔE/E): 20% at 8.04 keV radiation
- Low background noise: <5 cps/global</p>
- Readout time: real time
- No cooling
- Curved Be-window to reduce parallax

VÅNTEC-500 – Outperforms all previous gaseous detectors

Advances from MWPC:

- Tapered front end for high 20 angle access and space for large samples and sample stages
- Doubled the spatial resolution: The FWHM of the PSF is 200µm
- Two orders of magnitude higher maximum count rate: Global count rate: 1.5Mcps Local count rate: 250kcps per pointlike reflection
- Radiation hardness: accidental intensive irradiation without permanent damage
- Maintenance-free: no re-gassing

VÅNTEC-500 – Tapered front for low and high 2θ accessibility

VÅNTEC-500 – Outperforms all previous gaseous detectors

Detector geometry:

- Be-window opening 140 mm in dia.
- Frame size: 2048 x 2048 pixels 1024 x 1024 pixels 512 x 512 pixels
- Pixel size: 68 μm x 68 μm 136 μm x 136 μm 272 μm x 272 μm
- Detector working distance: 5~30 cm in D8 DISCOVER enclosure
- 2θ range in a single frame:

5	cm	83°
10	cm	56°
15	cm	42°
20	cm	33°
25	cm	27°
30	cm	23°

272 μm pixel (512x512) 136 μm pixel (1024x1024) 68 μm pixel (2048x2048)

•68 μm pixel size delivers the best spatial resolution

The New D8 DISCOVER

The New D8 DISCOVER Patented Door Mechanism

Swing door: wide opening for good accessibility

Sliding door: easy access for sample loading and configuration changes

15

Bruker AXS

The D8 DISCOVER with DAVINCI

- Fast and easy switching between line and spot focus
- Focus direction recognition
- No need to disconnect cables
- Compatible with standard tube design
- Bruker AXS proprietary technology

The D8 DISCOVER with DAVINCI Tool-free mount & component recognition

DAVINCI.SNAP-LOCK Tool-free change of optics

DAVINCI.MODE Component recognition

Bruker Confidential

SAXS

•
$$q_{min} = 0.025 \text{ Å}^{-1}$$

• $d_{max} = 25 \text{ nm}$

He beampath, SAXS beamstop, Vantec 500

Mittwoch, 18. Mai 2011

Configure: GADDS HTS Vertical theta-theta, Reflection/Transmission

SCD, December 2008

No barrier between 0D/1D/2D

Vertical theta-theta, CEC for microdiffraction/stress/texture, 0D->1D->2D

SCD, December 2008

XRD²: Systems with VÅNTEC-500 Detector

XRD² & Single Crystals

XRD² & Powders

XRD²: Diffraction pattern with both γ and 20 information

XRD²: Diffraction vector approach

Applications	Vector approaches		
Phase Identification:	Polarization and absorption correction		
Texture Analysis:	Orientation mapping angles; Data collection strategy (scheme)		
Stress Measurement:	Fundamental equation derived by second order tensor transformation; Data collection strategy (scheme)		
Crystal Size Analysis:	Equations for the effective volume calculation at both reflection and transmission modes.		

XRD²: PhaseID Measurement Geometry

XRD²: Single Frame Covering All

XRD²: Frame Merge and Integration

XRD²: Fundamental Equation for Texture Analysis

The D8 DISCOVER with DAVINCI VÅNTEC-500 for texture measurement

Bruker AXS

XRD²: Peak broadening-gold Nanoparticles

Bruker Confidential

XRD²: Particle size and instrument broadening:

The measured profile is a convolution of the functions representing particle-size broadening and instrument broadening

$$h(x) = \frac{1}{A} \int g(z) f(x-z) dz$$

where A is the area of the f(y) curve and y=x-z. Ref: B. E. Warren, X-ray Diffraction, Dover Publications, Inc. New York, 1990.

33

XRD²: Particle size calculation:

Scherrer equation:

$$t = \frac{C\lambda}{B\cos\theta}$$

where λ is wavelength (Å), B is FWHM (radians) corrected for instrument broadening, θ is Bragg angle, C is a crystal shape factor from 0.9~1.

For Gaussian profiles,

$$B^2 = U^2 - S^2$$

while for Cauchy profiles,

$$B = U - S$$

where *B* is the corrected FWHM for crystallite size calculation by Scherrer equation, and *U* and S are the FWHM's of the unknown and standard peaks, respectively.

XRD²: Data Collection:

Acetaminophen powder

5 second data collection

30 second data collection

- The spotty diffraction ring is due to the large crystallites compared to the sampling volume (beam size).
- The number of spots on the ring is determined by crystallite size, instrumental window (γ-range), multiplicity of the crystal plane, and effective diffraction volume.

For XRD² in reflection mode, the particle size is given by $d = k \left\{ \frac{p_{hkl}b^2 \arcsin[\cos\theta\sin(\Delta\gamma/2)]}{2\mu N_c} \right\}^{\frac{1}{3}}$

where k is the instrumental calibration factor or can be calculated

from $k = \left(\frac{3\beta}{4\pi}\right)^{\frac{1}{3}}$ if the instrument broadening in 20 direction is known.

For transmission mode with the incident beam perpendicular to the sample surface, the particle size is given by $\int_{1}^{1} \frac{1}{3} dx$

$$d = k \left\{ \frac{p_{hkl_i} b^2 t \arcsin[\cos\theta\sin(\Delta\gamma/2)]}{N_s} \right\}^2$$

where k is the instrumental calibration factor or

 $k = \left(\frac{3\beta}{4\pi}\right)^{/3}$

Bruker AXS

- The 2θ-integrated plots (γ-profiles) of three rings from (100), (110) and (111) planes are displayed.
- The number of crystallites is counted from the number of intersections of the γ-profile with a threshold line.
- To cancel out the effects of the overall intensity fluctuation (texture, etc.), a 2^{nd} order polynomial trend line is fitted to each γ -profile as a threshold line.
- Every two intersections of γprofile with the threshold line represents a crystallite.
- New analysis strategy?
- Size distribution?

(hkl)	P_{hkl}	20	Δω	N _s	k
(100)	6	21.36	38	23	0.1217
(110)	12	30.38	46	41	0.1106
(111)	8	37.44	42	38	0.1281

Calibration Results:

- The average scaling factor k is 0.12 in this calibration. The system can then be used to measure the crystallite size of unknown materials if the data can be collected in approximately the same condition.
- It is always necessary to calibrate the system with a known standard, preferably with a comparable sample geometry and crystallite size.
- For reflection mode, it is critical to have a standard with a comparable linear absorption coefficient so as to have similar penetration.

XRD²: Particle Size Analysis by X-ray Diffraction:

- 20 profile analysis, including measurement from peak FWHM by Scherrer equation, or profile analysis by Stokes and Wilson, is suitable for particle size below 100 nm.
- γ profile analysis, based on sampling statistics, is suitable for particle size from sub-micrometer to a few millimeters.
- The particle size range of pharmaceutical substances is from sub-micrometer to a few millimeters.

18.05.2011

40

More About XRD²

- 1. Introduction.
- 2. Geometry Conventions.
- 3. X-Ray Source and Optics.
- 4. X-Ray Detectors.
- 5. Goniometer and Sample Stages
- 6. Data Treatment.
- 7. Phase Identification.
- 8. Texture Analysis.
- 9. Stress Measurement.
- 10. Small-Angle X-Ray Scattering.
- 11. Combinatorial Screening.
- 12. Quantitative Analysis.
- 13. Innovation and Future Develop

Thank You for Your Attention