Advances in Synchrotron XRPD for the Enhanced Characterization of Pharmaceuticals

Fabia Gozzo

Excelsus Structural Solutions SPRL, Brussels - Belgium
Outlook

I. Role of structural analysis in the pharmaceutical industry

II. Synchrotron Radiation X-Ray Powder Diffraction (SR-XRPD)

III. Synchrotron XRPD in the field of pharmaceuticals

IV. Conclusions
Why is structural analysis relevant to the pharmaceutical industry?

- Polymorphism and the relation between structure ↔ properties
- Microstructural properties (e.g. influence of stress and strain, particle size and domain)

Example of Bupivacaine Hydrochloride

<table>
<thead>
<tr>
<th>Form B at 112 °C, monoclinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 21, a= 20.05795 Å, b= 11.12509 Å, c= 10.13290 Å, β= 116.18377°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form D at 20 °C, orthorhombic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 2 2 2, a= 14.90622 Å, b= 11.73977 Å, c= 11.08386 Å</td>
</tr>
</tbody>
</table>

Gozzo, Masciocchi, Griesser, Niederwanger, 2010. Personal Communication
Properties influenced by the solid state structure of substances and, therefore, influenced by polymorphism:

- Solubility
- Pharmacokinetics and pharmacodynamics
- Thermodynamic properties (e.g. stability of drugs) \(\rightarrow\) in-situ non-ambient time-resolved studies
- Spectroscopic properties
- Mechanical properties (e.g. hardness, compressibility, tableting, tensile strength)
Polymorphic studies play a key role throughout the whole life-cycle of products

Compound selection
- Identification and characterization of individual polymorphic forms and selection of desired form

Technical development
- Development of manufacturing processes to ensure high and reproducible content of desired polymorphic form
- Polymorphic studies for impurity detection and stability studies
- Crystal engineering (e.g. co-crystallization*)

Commercial production
- Polymorphic characterization to support (1) process validation, (2) comparability studies following process changes, and (3) investigations to assess impact of deviation on product quality

Intellectual Property (IP)

Fight against counterfeit drugs

X-ray Powder Diffraction, in particular with synchrotron radiation is a unique and powerful technique for such studies

Example of carbamazepine (see Organic Crystal Engineering, Eds. Tiekink, Vittal & Zaworotko, Wiley 2010)
What makes synchrotron-XRPD such a powerful analytical tool?
II. Synchrotron Radiation X-Ray Powder Diffraction (SR-XRPD)

Our 3 ingredients for state-of-the-art SR-XRPD

A. An efficient synchrotron facility and beamline optics

B. State-of-the-art diffractometers

C. Outstanding detection systems
II. Synchrotron Radiation X-Ray Powder Diffraction (SR-XRPD)

Our 3 ingredients for state-of-the-art SR-XRPD

A. An efficient synchrotron facility and beamline optics

B. State-of-the-art diffractometers

C. Outstanding detection systems
Our 3 ingredients for state-of-the-art SR-XRPD

A. An efficient synchrotron facility and beamline optics

B. State-of-the-art diffractometers

C. Outstanding detection systems

Hodeau et al, 1998

Multicrystal Analyser

MYTHEN II
II. Synchrotron Radiation X-Ray Powder Diffraction (SR-XRPD)

A. Synchrotron facility and beamline optics

Properties:

- High Spectral Brightness: $10^{12}-10^{15}$ photons/sec in small beams (μm2 to mm2)
- Tunable and monochromatic photon energy
- Polarization
- Time structure
- Coherence

Benefits

- Efficient data collection, high statistics
- Time-resolved in-situ non ambient XRD
- Photon-consuming experimental set ups
- Penetration of highly absorbing materials
- Variable d-spacing resolution
- Large unit cells (many reflections at very low angles)
- XRD near absorption edges (anomalous dispersion)
B. State-of-the-art diffractometers

Properties:
Resolution: 1 arcsec
Accuracy: ±2 arcsec
Precision: ±1 arcsec

Large working space and flexibility

Benefits
- Great mechanical stability
- Highest flexibility to accommodate all kinds of sample environments
C. Outstanding detection systems

Properties:
- Angular selection of diffracted beam
- Fluorescence suppression

Benefits:
- Ultra-high resolution (better than 0.003°)
- Angular resolution independent of sample dimension and position
- Independence of transparency effect
- High S/N and S/B

Trade-off:
- Long measurements (min to hours) → radiation damage

Multicrystal Analyser

MYTHEN II

Properties:
- Solid state modular microstrip detector
- Large dynamic range (24 bits)
- Single photon counting read out
- Fluorescence suppression
- Very fast acquisition times (subsec)

Benefits:
- 120° angular coverage at SLS
- High d-spacing resolution
- 0.004° inherent angular resolution
- Capable of simultaneously detecting strong and weak signals
- Sub-sec time resolution XRPD for in-situ kinetic studies

Trade-off:
- Resolution limited by sample dimension
- Sensitive to the uniformity of powder distribution in sample holder, granularity, statistical orientation

Hodeau et al, 1998

Schmitt et al, 2003,

Bergamaschi, Schmitt et al, 2010
Synchrotron XRPD in the field of pharmaceuticals

- Indexation, structural solutions & microstructural analyses
- Fast and dose-controlled SR-XRPD
- Quantitative Phase Analysis (L.o.D, L.o.Q)
- In-situ kinetic studies

- Bruni, Gozzo et al, *Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs*, J. Pharm. Sci.2011, 100(6), 2321-2332
Minimization of radiation damage control with fast and dose-controlled SR-XRPD

- **Radiation Damage** is the alteration of the structural and chemical properties of the material under investigation induced by its exposure to electromagnetic radiation. It is dose and energy dependent.

- In XRD patterns we observe shift (usually anisotropic) and broadening of reflections and their progressive disappearance → it usually undermines the success of structural solution.

The effect is very serious at 3rd generation synchrotron facilities and affects the study of organic compounds, in particular pharmaceuticals.

Our high-resolution, fast and dose controlled SR-XRPD measurements have opened a new gate to the systematic structural analyses of organic compounds!
III. Synchrotron XRPD: Dose-controlled SR-XRPD

Bupivacaine Hydrochloride - form D

- 1 mm capillary,
- Mythen data at 50% reduced intensity
- No radiation damage up to 3min

Large counting statistics in subsec acquisition times

In-situ kinetic studies of organic compounds!

Gozzo F., 2008
Why is Quantitative Phase Analysis relevant to the pharmaceutical industry?

- **Polymorphic purity**: detect and quantify unwanted polymorphic forms in both drug substance and drug product
 - Level of Detection (LoD)
 - Level of Quantitation (LoQ)

- Assess the **polymorphic composition** in drug substance and product

- In formulated materials, the **API/excipients relative proportion** is paramount and needs to be kept under control

- **Degree of Crystallinity** in amorphous/crystalline mixtures
Quantification of organic compound mixtures can be achieved via different methods (e.g. spectroscopic, thermal and diffraction methods)

Diffraction methods are direct methods → diffraction information is directly produced by the crystal structure of the component phases in the mixture

Quantitative phase analysis with conventional lab-XRPD is widely used and an established practice in the pharmaceutical industry → LoD and LoQ down to very few % wt is achieved with reasonable acquisition time and powder volumes

Can SR-XRPD achieve considerably lower LoD and LoQ without increasing costs and complexity?

With our fast and dose controlled SR-XRPD we were able to directly detect and quantify traces of API as low as 0.05% wt in mixtures
III. Synchrotron XRPD: Quantitative Phase Analysis

QPA of a binary API physical mixtures with fast SR-XRPD

Majority phase (intensity up to 1.5 M counts): Haloperidol

Minority phase: Indomethacin

Diffracted intensity (a.u.)

Majority phase: Haloperidol

Minority phase: Indomethacin

20-24 May, 2013
Beijing, China
API mixtures are often characterized by an inhomogeneous distribution of the phase components

SR-XRPD in Debye-Scherrer geometry (transmission in glass capillaries) probes relatively small powder volumes

SR-XRPD patterns were recorded at several locations on the glass capillary and the effect on the accuracy of our QPA was studied
Whole-patterns QPA Methods

Rietveld Method

Rietveld, JAC (1969). 2, 65
Hill & Howard, JAC (1987). 20, 467-474

- all phases should be crystalline and a valid structure model available for all phases in the mixture
- amorphous or unknown phases quantified as a group by generating absolute phase abundances for the analyzed phases (e.g. internal standard)

Rietveld-like Methods (PONKCS and Quanto+)

Scarlett & Madsen, Powder Diffr. 21(4), 2006, 278-284

→ real structure factors substituted with empirical values derived from whole patterns refinement on pure phases

Requirements:

- pure phases available (PONKCS & Quanto+), spiked pure phases (PONKCS)

Benefits:

- Rietveld-like QPA with only partial structural knowledge (PONKCS & Quanto+), with NO structural knowledge (PONKCS), application to amorphous materials (PONKCS)
III. Synchrotron XRPD: Quantitative Phase Analysis

Whole-pattern QPA refinements on very diluted API mixtures

Measured (wt%) vs Weighed (wt%) graph showing the comparison of measured and weighed quantities for different methods: Rietveld, PONKCS, Quanto+. The graph illustrates the average over multiple powder volumes.
Whole-pattern QPA refinements on very diluted API mixtures

The average of %wt values at individual capillary powder volumes was consistent with %wt values from merged diffraction patterns.
Whole-pattern QPA refinements on very diluted API mixtures

The average of %wt values at individual capillary powder volumes was consistent with %wt values from merged diffraction patterns.
III. Synchrotron XRPD: fast SR-XRPD vs HR-SR-XRPD and Lab-XRPD

5% Indomethacin + 95% Haloperidol

Minority phase

Fast- SR-XRPD
2 min

HR- SR-XRPD
100 min

Lab-XRPD
17 min

Diffracted intensity (a.u.)

1/d (Å⁻¹)

HR-XRPD: A.Fitch, ID31, ESRF
Lab-XRPD: I. Madsen, CSIRO, Australia
III. Synchrotron XRPD: fast SR-XRPD vs HR-SR-XRPD and Lab-XRPD

1% Indomethacin + 99% Haloperidol

1/d (Å⁻¹)

Diffracted intensity (a.u.)

Fast- SR-XRPD
4.5 min

HR- SR-XRPD
60 min

Lab-XRPD
17 min

Minority phase
III. Synchrotron XRPD: fast SR-XRPD vs HR-SR-XRPD and Lab-XRPD

0.05% Indomethacin + 99.95% Haloperidol

Diffracted intensity (a.u.)

1/d (Å⁻¹)

0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

Fast- SR-XRPD

20 min

HR- SR-XRPD

80 min

Lab-XRPD

17 min

Minority phase

HR-XRPD: A. Fitch, ID31, ESRF
Lab-XRPD: I. Madsen, CSIRO, Australia
III. Synchrotron XRPD: an example of \textit{in-situ} kinetic study

\textbf{In-situ dynamic study of the LaNi$_5$ hydrogen absorption process}

- \textit{In-situ} hydrogen absorption at 15 bar
- \textit{In-situ} desorption by connecting the cell to a vacuum pump
- Continuous measurements using the μstrip detector while the reaction takes place
- Acquisition times between 5 and 20 sec per pattern, depending on the reaction kinetic.

\textbf{hydrogen uptake} \hspace{1cm} \textbf{diffraction pattern} \hspace{1cm} \textbf{phase content}

\textbf{New beamline optics+ Mythen II \rightarrow 10 faster}

\textbf{t (s)} \hspace{1cm} \textbf{2θ (°)} \hspace{1cm} \textbf{t (s)}

0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40

0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6

0 10 20 30 40
0 10 20 30 40
0 10 20 30 40

0 20 40 60 80 100
0 20 40 60 80 100
0 20 40 60 80 100

α β γ

Copyrights Excelsus Consortium

\textbf{PPXRD-12}
20-24 May, 2013
Beijing, China

fabia.gozzo@excels.us
www.excels.us
IV. Conclusions

- Polymorphic forms may have a significant impact on the quality or performance of pharmaceutical and chemical products.
- For pharmaceuticals, a careful characterization of the polymorphism of substances and drug product should therefore play a key role throughout the whole life-cycle of products.
- Polymorphic studies have also started to play a key role during patent litigations and in the fight against counterfeit drugs.
- Synchrotron-Radiation Powder Diffraction has become a unique and very powerful tool for polymorphic studies, such as kinetic analyses, the identification of closely related polymorphic forms and high-sensitivity quantitative phase analyses.
- This use is in line with the regulatory expectations (ICH guidelines and FDA guidance) that newly available analytical technologies are used for continuous improvements in process understanding and product characterization.

www.excels.us
fabia.gozzo@excels.us
Acknowledgments

- **SLS direction** (C. Quitmann, F. van der Veen) and **SLS TT AG** (Ph. Dietrich, S. Mueller)
- **MS beamline** (Ph. Willmott, A. Cervellino, N. Casati, M. Lange, D. Meister and B. Schmitt, A. Bergamaschi)
- **Arturo Araque**, Excelsus Scientific Engineering, USA
- **Industrial customers**: Bernd Hinrichsen (BASF), Thomas Laube (Cilag AG)
- **G. Bruni**, API mixtures for the QPA project, Uni. Pavia, Italy
- **Ian Madsen & Nikki Scarlett** for the lab-XRPD data and support for the QPA analyses, CSIRO, Australia
- **C. Giannini & B. Aresta** for the QPA analyses with QUANTO+, CNR-IC-Italy
- **A. Fitch**, ID31 beamline at ESRF, Grenoble, Fr
- **A. Kern, M. Saviano, P. Stephens, A. Cossy, D. Sheptyakov** and many others