X-ray Diffraction Methods Subcommittee Meeting Minutes Wednesday, 13 March 2019 10-11:00 a.m. Chris Gilmore, Chairman

- 1. Call to Order
- 2. Appointment of Minutes Secretary
- Approval of Minutes from 2018 So moved by Scott Misture. Seconded by John Faber.
- 4. Review of Mission Statement The X-ray Methods Subcommittee will recommend data for inclusion in the PDF by considering instrument configurations, data collection, and powder pattern calculations, emphasis on state-of-the-art methods.
- 5. Directors' Liaison Report

Last years' motion:

The XRD Subcommittee recommends to the Technical Committee that Headquarters explore possibilities given by traditional and advanced machine learning (e.g. partial least squares) for expanding the capabilities of the database software towards quantification.

BoD response – positive, noting ICDD chairman at IUCr and DXC presentation/paper on this topic and more discussion at the Fall Strategy Review.

- 6. Short presentations
 - How to win the Reynold's Cup

 Named for Bob Reynolds Competition to promote quantitative mineral analysis– 3 samples are provided and has international participation. Suggestions on how to win: get phase ID right; factors of quantitative analysis (avoid texture); cross check results (see slides).
 - Clustering and the ICDD Databases J. Kaduk As applied to Zeolite task group. Polysnap. Similarity index. MMBS. Jim presented zeolite clustering examples from the PDF-4+ 2019 database and named Cluster K5 and K (see slides).
 - Partial Least Squares Revisited C. Gilmore Looking at PLS as a Machine Learning Method – Start with Training data (known composition) that include mixtures - important to get number of factors correct for good results – Then move to Validation data (PXRD patterns + known compositions) as independent check of training data– then finally, unknown PXRD patterns – example highlighted: AliteM1 (see slides).
- 7. Discussion

The discussion portion mainly focused on the Partial Least Squares presentation.

Chris inquired if PLS could be used for mixtures. Tom indicated, if components are known. Chris then expressed interest in working with ICDD using PLS for the database – is there a way for headquarters to process data for a project? Jim mentioned polysnap "broke" JADETM, citing fuzzy clustering. Chris then mentioned PLS might be useful for secondary analysis. He then commented that we should pursue machine learning and data mining. Jim agreed, commenting, we pitch ourselves as a smart database. Matteo commented, perhaps PLS could be used with associated minerals and the like. Tom commented, Metals and Alloys are utilizing the concept, but nothing else yet. Direction is needed from membership to move forward. This then led to a motion (below).

Motion: The X-ray Methods Subcommittee recommends to the Technical Committee that clustering techniques be incorporated into the database as a matter of priority. A task group should be set up.

Moved: Matteo Leoni; seconded by Jim Kaduk, 9 Yes, 0 No, 3 Abstentions - Motion passed.

8. Adjournment

C. Gilmore

Nicole Ernst Boris

T. Ida

Steve Hillier ICDD March 2019 stephen.hillier@hutton.ac.uk

The James Hutton Institute

Background of the Reynolds Cup

Data of the Reynolds Cup

How to win the Reynolds Cup!

- Biennial competition named after Bob Reynolds (Dartmouth), established in 2000 by Douglas McCarty and Jan Srodon of ChevronTexaco and Denny Eberl of the USGS.
- Main goal: to promote and improve quantitative mineral analysis in a sportive spirit!
- Story of success (sometimes even mentioned as world championship in quantitative mineralogy).

- Utilizes three sample mixtures of pure mineral phases that represent realistic sedimentary and weathered rock compositions
- Open to anyone interested in quantitative mineralogy using <u>any</u> available technique

Sample compositions/descriptions

- Mudstone
- Sandstone
- Siltstone
- Calcareous mudstone
- Saline sedimentary rock
- Sediment from an evaporate environment
- Sample representing a hydrothermal alteration environment
- Soil formed on a parent material rich in ferromagnesian minerals and amorphous soil minerals
- Petroleum shale
- Nickel laterite
- Bauxite

Mainly meant to mimic various types of sedimentary rocks and soils

International distribution of entries to the 9th Reynolds Cup (2018)

- 88 registrations
- 28 countries
- 73 finally submitted their best result

(Slide Courtesy Rieko Adriaens, organiser 9th RC)

- How is the Reynolds Cup judged?
- 3 samples sum total bias of all 3

$$Bias = \sum abs (W_{actual} - W_{submitted})$$

- Where W = weight % of a given mineral
- Misidentified minerals are also counted towards bias

- Top three with the lowest total bias are named and awarded with plaques and the winner receives the perpetual Reynolds Cup trophy. Other participants kept confidential.
- Winner is invited to prepare samples for the next contest

- Purification
 - Hand picking
 - Sieving
 - Magnetic separation
 - Chemical treatments
 - Size fractionation (<2µm, <0.5µm, <0.2µm)
 - Synthesis
- Preparation
 - Grinding
 - Sieving (200-400µm)
 - Check for purity (XRD, XRF)
- Equilibrate

- Weighing
- Mixing
 - Ball mill
 - End over end shaking
- Homogeneity checks
 - XRD
 - XRF
- Splitting
 - Random sampling
 - Rotary splitter
- Packaging and postage

It's a lot of work to run a Reynolds Cup!

Example of bias calculation

		Absolute		Relative	
	TRUE	FOUND	error	error	
Quartz	20	30	10	50	
K-spar	5	2	3	60	
Plagioclase	7	2	5	71	
Calcite	10	16	6	60	
Dolomite	5	2	3	60	
Pyrite	3	1	2	67	
Illite/Smectite	30	34	4	13	
Illite	10	5	5	50	
Kaolinite	5	0	5	100	
Chlorite	5	8 3		60	
Total sample bias	5		46		

Example of the bias calculation for a simple sample (RC samples more complex)

The 'non-clay' minerals that have been in the mixtures

- Quartz (18)
- K-feldspar (13)
- Plagioclase (14)
- Calcite (12)
- Dolomite (10)
- Magnesite (4)
- Aragonite (3)
- Huntite (1)
- Halite (6)
- Pyrite (7)
- Siderite (8)
- Barite (5)

- Gypsum (2)
- Anhydrite (2)
- Alunite (1)
- Hematite (6)
- Goethite (5)
- Magnetite (4)
- Anatase (9)
- Rutile (3)
- Ilmenite (3)
- Gibbsite (3)
- Boehmite (1)
- Fluorite (2)

- Apatite (1)
- Tourmaline (2)
- Zircon (2)
- Spinel (1)
- Opal-CT (1)
- Amphibole (3)
- Zeolite (1)
- Epidote (1)
- Birnessite (1)
- Arcanite (1)
- Amorphous (6)

As of 2012, needs updated with last 3 RC's

The James Hutton Institute

Clay minerals and phyllosilicates in the mixtures

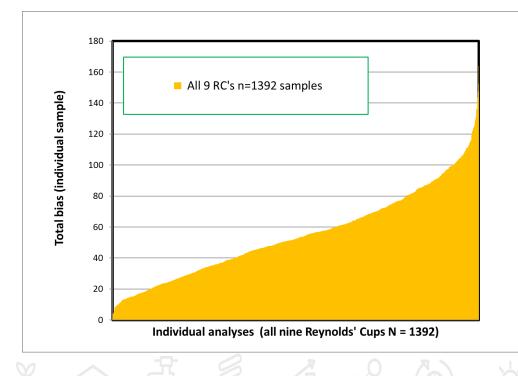
- 2:1 Dioctahedral Clays (18)
 - Smectite (montmorillonite, nontronite)
 - Mixed layered (illite-smectite, glauconite-smectite)
 - Mica/Illite (muscovite 2M₁, illite 1M_d, 1M)
- 2:1 Trioctahedral Clays (6)
 - Smectite (saponite)
 - Vermiculite
 - Mixed layered (corrensite)
 - Mica (biotite)

As of 2012, needs updated with last 3 RC's

- Kaolinite (well and poorly ordered)
- Halloysite
- Dickite
- Chlorite (11 clinochlore, ripidolite)
- Serpentine (2 lizardite)
- Talc (3)
- Sepiolite (1)
- Palygorskite (1)

Number of minerals in each sample

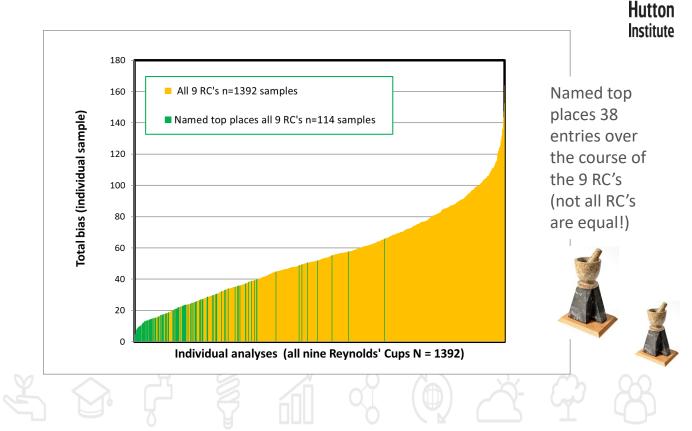
Average about 14 different minerals



Number of analyses returned in the last 9 Reynolds Cups

Reynolds Cup	Year	Sent out	Returned
RC1	2002	40	15
RC2	2004	60	35
RC3	2006	60	37
RC4	2008	53	43
RC5	2010	76	63
RC6	2012	74	62
RC7	2014	81	67
RC8	2016	83	69
RC9	2018	88	73
			464

Individual RC samples

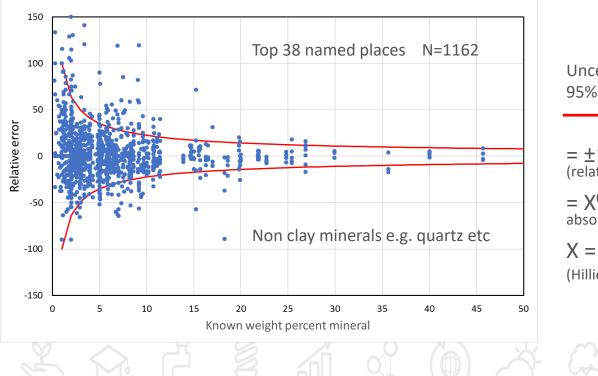


Named top finishers (N=38 RC entries)


		1	2	3	4	5	6	7
RC1	2002	Kleeberg	Dorhmann	Eberl	Hillier			
RC2	2004	Omotoso	McCarty	Ploetz	Hillier			
RC3	2006	McCarty	Hillier	Kleeberg				
RC4	2008	Hillier	Omotoso	Kleeberg	Emmerich	Chipera	Eberl	Raven
RC5	2010	Raven	Eberl	Kleeberg	Zeelmakers	Dorhmann		
RC6	2012	Ploetz	Hillier	Kleeberg	Youjin	Dorhmann	Adriens	
RC7	2014	Kleeberg	Hillier	Dorhmann	Dietel	Emmerch	Adriens	
RC8	2016	Adriens	Raven	Hillier	Grafhoff	Dorhmann		
RC9	2018	Hillier	Lanson	Ploetz	Srodon	Raven		

http://www.clays.org/reynolds.html

The James


The James Hutton Institute

Uncertainty at 95% confidence

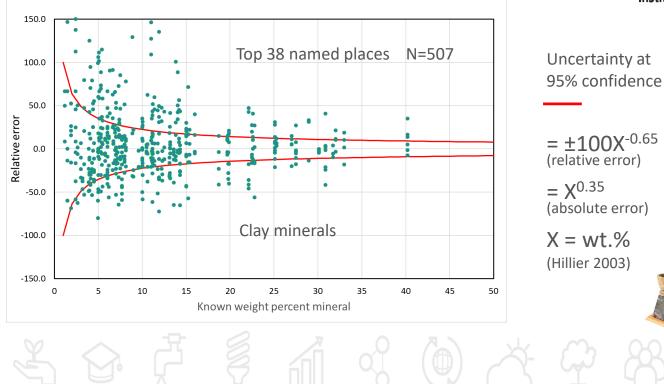
 $= \pm 100 X^{-0.65}$ (relative error)

 $= X^{0.35}$ (absolute error)

X = wt.% (Hillier 2003)

The James Hutton Institute

Uncertainty at 95% confidence


= ±100X^{-0.65} (relative error)

 $= X^{0.35}$ absolute error

X = wt.%

(Hillier 2003)

Key recommendations on Clay Minerals Society website

http://www.clays.org/reynolds.html

- Get the identification (ID) right
 - Misidentification is the biggest source of bias
 - Clay mineral ID aided by classic oriented and treated preparations
- For quantitative analysis lots of factors but..
 - Ensure adequate particle size reduction (micronise)
 - Try to avoid texture in the specimen
 - Use full pattern methods rather than single peak
- Cross check results
 - E.g. chemical analysis mineralogical phase analysis must be compatible with chemical analysis

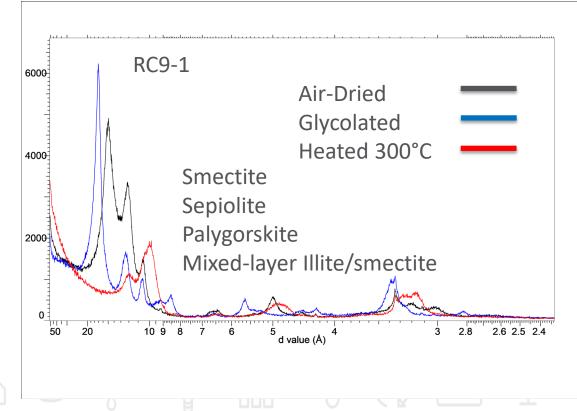
Kieserite

Identification is a key step - Misidentified phases

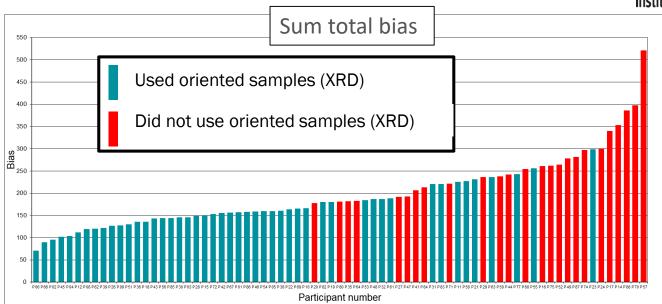
Actinolite
Vegerine
Verinite
Vkaganeite
Abite/anorthite
Allophane
Muaudite
Vimandine
u-Mg ND
Numina gamma
Numinite
Nunite
Nunogen
Amorphous
Amorphous (Allophane)
Amorphous KAISi3O8
Amorphous Si
Amorphous SiO2
Amorphous Volcanic Glass
Amphibole
Analcime
Anatase Andesine
Anhydrite
Ankerite
Anorthite
Antigorite
Antierite
Apatite
Aragonite
Arcanite
Arsenolite As2O3
Augite
sarite
Sazait
Serthierine
Siotite Simessite
Bromcarnallite Brookite
Brucite
Brushite
sytownite
6H5O3PZn
alcite
aMg2Al16O27
Carbonate-fluorapatite
Carnallite
Ca5iO3
Selestine
habazite
Thalcosite
hiorargyrite
hlorite Dioctahedral
Thiorite Trioctahedral Thiorite-Montmorillonite(Tri)
Inforite-Montmonilonite(In) Inforite-Smectite Trioctahedral
hiorite-vermiculite
Dromite
Thrysotile
Jinochlore
Jingenstate
linoptilolite
linoPyroxene

Clinozoisi Cordierite Corrensit Corundum Cotunnite Cristobalite Cryptohalite Crysotile Diaspore Dickite Dickite/Nacrite Diooside Dolomite Dolomite/Ankerite Elpidite Enstatite Epidote Euclase Faujasite Fe gxide Fedorite Feldspar (Kspar) Ferrihydrite Ferrite magnesian Fluorapatite Forsterite Galeite Garnet Gehlenite Gibbsite Gismondine Glass/Obsidiar Glauberite Glauconite Goethite Gypsum Halite potassian Halloysite Hectonite Hedenbergite Hematite Hercynite Heulandite Hexahydrite Homblende Hotsonite Hyalophane hydrated Ca-Mg carbonate Hydrocalumite Hydrotalcite Hydroxyapophylite Hydroxylapatite Hypersthene Illite Tri Ilmenite iterstratified (tri Iron Iron Silicon Jarosite KAISiO4 Kaolinite kaolinite/smectite Kaolinite-Chlorite K-feldspa

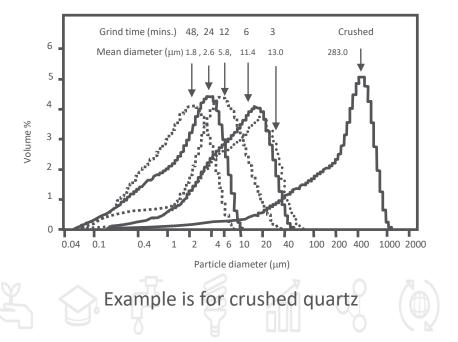
K-rich Chlorite Kutnohorite Laueite Laumonite Lepidocrocite Leucite Lime Lithosite Lizardite Magnesioferrite Magnesite Magnetite Malachite Manganite Melantenite Mg7Zn3 Mg-calcite MgSO4 Mica Mica Trioctahedral Mica-Vermiculite Trioctahedral Microcline Missing Monazite Monohydrocalcite Montmorillonite (Tri) Moschellandsbergite Mulite Nacrite Na-Feldspar Natrolite Nepheline Nitride Silicon Nordstrandite Norrishite Oligoclase Olivine Opal Opal CT Orthoclase OrthoPyroxene Osumilite Others not precisely identified oxide 1 oxide 2 Palygorskite Periclase Perovskite Philipsite Phlogopite (2M1) Phlogopite (mica-trioctahedral) phosphate hydrate Plagioclase Portlandite Potarite Prehnite Pseudobrookite Pumpellyite Pyrite Pyrolusite pyrophylite 1T pyrophylite 2M Pyroxene Pyroxene (Augite)

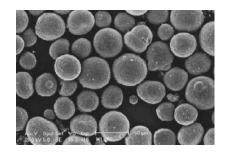

Pyroxene (Ferroan Diopside) Pyrrhotite Rectorite Reverite Rhodochrosite Rhodonite Rodolicoite Rutile Sanidin Saponite Sauconite Schorl Sepiolite Serpentine Siderite Siderite (Mn-rich) Siderite(not Mg) Silicon Silicon dioxide Sillimanite Smectite trioctahedral Smithsonite Sodalite Spencerite Sphalerite iron Spinel Staurolite Strontianite Sylvite Syngenite Szomolnokite Talc Thenardite Thermonatrite Titanite Titanomagnetite Tobermorite Tourmaline Trimerite Trydymite Tungstite Unidentified Unnamed hydrate Vaterite Vauxite Vermiculite Vermiculite Trioctahedral Vermiculite/illite Vermiculite-Smectite Trioctahedra Vesuvianite Wagnerite Wavelite Whitlockite Whitmoreite Wollastonite Wroewolfeite Wuestite Zeolite Zeophylite Zinnwaldite 7ircon Zirconium sulphate hydroxide hydrate Zoisite

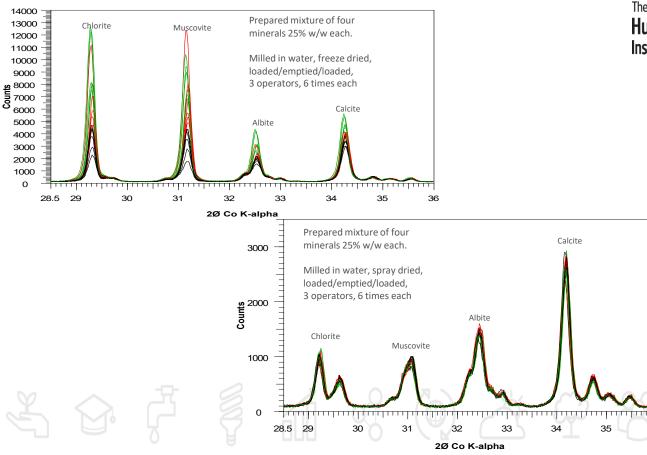
260!


As of 2012, needs updated

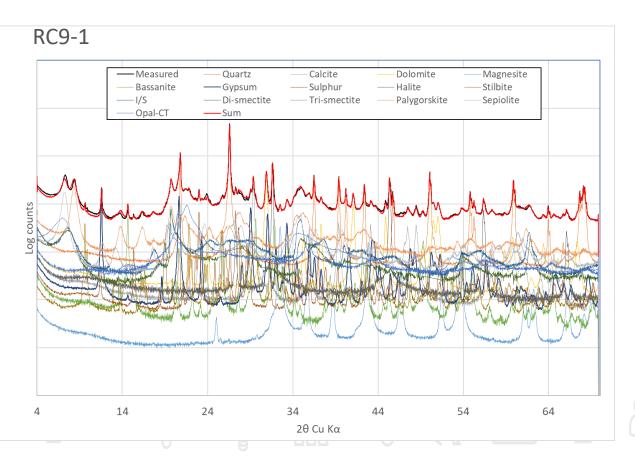
Use oriented clay preparations to help ID the clay minerals




- For optimum particle size, best method micronizing with something like the McCrone Mill
 - Good at reducing (not smearing) particle size distribution



- Various method of <u>attempting</u> to make a random powder
- Top, back or side loading
 - Draw backs reproducibility very difficult to guarantee
 - Advantages simple
- Best method is spray drying
 - Draw backs need a couple of grams
 - Need the equipment
 - Advantages <u>extremely reproducible</u>
 - Why? Because It is a random powder



36

Use pattern summation

Reynolds Cup	Year	% Rietveld	% Summation
RC1	2002	27	20
RC2	2004	54	20
RC3	2006	54	14
RC4	2008	63	28
RC5	2010	73	17
RC6	2012	63	23
RC7	2014	60	18
RC8	2016	74	10
RC9	2018	81	18
	Average	65	18

The James Hutton Institute

How to come 2nd in the Reynolds Cup (the best place to finish!)

- Automated full pattern summation
- Couples phase identification and quantification
- Testing on previous RC samples
 - RC3 = 2nd/39;
 - RC4 = 2nd/44;
 - RC5 = 2nd/64;
 - RC6 = 5th/63;
 - RC7 = 9th/68;
 - RC8 = 1st/70;
 - RC9 = 2nd/74

Next (10th) Reynolds Cup early 2020

Acknowledgements - Mark Raven and Reiko Adriaens for various slides and all previous organisers and participants of the Reynolds Cup

Application of Cluster Analysis in the Zeolite Task Group

NORTH CENTRAL COLLEGE NAPERVILLE, ILLINOIS Founded 1861 James A. Kaduk Illinois Institute of Technology North Central College Kaduk@polycrystallography.com

Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

Search						
	Subfile 🔻		🕰 Environment	🖌 Status	🚖 Quality Mark	Database
Custom PDF Se Alkaloid Amino Acid, Peptide Battery Material Bioactive No Subclass Depressant Narcotic Pesticide & Ant Psychotropic	e & Complex		Ambient Ambient Temp. Press. Temp. & Press. Atomic Coordinates	Primary Alternate	 Star Good Indexed Calculated Prototyping Minimal Acceptable Blank Low-Precision Hypothetical 	ICDD (00) ICSD (01) CSD (02) NIST (03) LPF (04) ICDD Crystal Data (05)
Periodic Table	Mineral Classification V	Zeolite Classification V		tional Group 🔻		
Formula/Name	AEN - Aenigmatite (group) ALC - Allactite (group) VRL - Alluaudite (group) ALM - Alum (group) ALN - Alunite (supergroup)	SFE - SSZ-48 SFF - SSZ-44 SFG - SSZ-58 SFH - SSZ-53 SFN - SSZ-59	>5_fused_r >9_member 1_Hetero_a			
Crystallography Modulated	AMB - Amblygonite (group) -AMP - Amphibole (family) -ANC - Analcime (supergroup) -ANY - Ancylite (supergroup)	SFO - SSZ-51 SFS - SSZ-56 SGT - Sigma-2 SIV - SIZ-7	2_fused_rin 2_Hetero_a 3_fused_rin	gs toms_in_ring(s)		
Diffraction Physical Properties	B -ADA - Andalusite (group) ANT - Antlerite (group) B -APA - Apatite (group)	SOD - Sodalite SSF - SSZ-65 SSO - SSZ-61	3_membere 4_fused_rin 4_Hetero_a	l_ring gs toms_in_ring(s)		
Reference Comments	APH - Aphthitalite (supergroup) APO - Apophyllite (supergroup) ARA - Aragonite (group) ARC - Arcapite (group)	SSY - SSZ-60 STF - SSZ-35 STI - Stilbite STO - SSZ-31	4_membere 5_fused_rin 5_membere 6_membere	gs I_ring		~
	Pearson Symbol ▼ With Hydrogen Prototype Structure ▼ Any Prototype Structure Formula Type (ANX) ▼					
	eset Tab Reset All Help Range Input ▼ Global Operator ▼ [Zeolite Class	ification (SOD - Sodalite)] And [Status (Primary, Alternate)]				
Search	here to search 🖳 📮 💼	< 🦳 🔇 📊 😰 🚳			x ² ^ 🗲 🐚 🧖	ַן× 9:54 AM 3/4/2019

😞 🌚 🎝 Q ¥ Open PDF Cards Preferences Search History Results SIeve+ Microanalysis

& Results - 480 of 412,083

File Fields Tools Help

📁 Open PDF Card	DF Card 🕅 Simulated Profile							~					
PDF #	QM	Chemical Formula	Compound Name	Mineral Name	D1 (Â)	D2 (Å)	D3 (Å)	SYS	Auth SPGR	XtlCell a (Å)	XtlCell c (Å)	AuthCell Vol (Å3)	L1)
00-002-0351	0 I	Al ₆ Na ₈ Si ₆ O ₂₄ Cl ₂	Aluminum Sodium Silicate Chloride	Sodalite	3.640000	2.100000	2.380000	С	P-43n	8.890	8.890	702.60	6.2 🔥
00-011-0401	0 I	Na4 Al3 Si3 O15 (O H)	Sodium Aluminum Silicate Hydroxide		3.630000	6.280000	2.560000	С	P-43n	8.874	8.874	698.81	6.2
00-011-0491	🔴 B	(Fe , Mn) ₄ Be ₃ Si ₃ O ₁₂ S	Iron Manganese Beryllium Sulfide Silicate	Danalite	3.350000	1.932000	1.012000	С	P-43n	8.207	8.207	552.78	4.0
00-013-0114	9 I	Fe Zn ₃ Be ₃ Si ₃ O ₁₂ S	Iron Zinc Beryllium Silicate Sulfide	Genthelvite	3.330000	2.174000	1.918000	С	P-43n	8.150	8.150	541.34	4.0
00-014-0017	0 0	(N H ₄) ₃ Al ₃ Si ₃ O ₁₂ Cl	Ammonium Aluminum Chloride Silicate		3.644000	6.330000	2.580000	С	I	8.930	8.930	712.12	6.3
00-015-0253	0 I	(Mn , Fe , Zn) ₄ Be ₃ Si ₃ O ₁₂ S	Manganese Beryllium Sulfide Silicate	Helvite	3.370000	1.947000	1.124000	С	P-43n	8.261	8.261	563.76	3.6
00-016-0612	0 0	Na2 O · Al2 O3 ·2.1 Si O2 ·× H2 O	Sodium Aluminum Oxide Silicate Hydrate		3.630000	2.810000	2.560000	Х					6.2
00-017-0538	0 I	Na8 Al6 Si6 024 S 04	Sodium Aluminum Sulfate Silicate	Nosean, syn	3.710000	2.628000	6.450000	С	P-43m	9.078	9.078	748.07	9.0
00-017-0749	S	Na6 Ca2 Al6 Si6 O24 (5 O4)2	Sodium Calcium Aluminum Silicate Sulfate	Lazurite-C	3.710000	2.622000	2.872000	С	P-43m	9.090	9.090	751.09	6.4
00-019-1182	● I	Na ₄ Al Be Si ₄ O ₁₂ (Cl, S)	Sodium Aluminum Beryllium Chloride Silicate	Tugtupite	3.520000	6.130000	3.570000	т	I-4	8.583	8.817	649.53	6.1
00-020-1087	● I	(Na, Ca) ₈ (Si, Al) ₁₂ O ₂₄ (S	Sodium Calcium Aluminum Silicate Sulfate	Haüyne	3.720000	2.623000	6.470000	С	P-43n	9.082	9.082	749.11	6.4
00-021-1099	S	Na8 Al6 Si6 024 S 04	Sodium Aluminum Silicate Sulfate	Nosean	3.710000	6.440000	2.628000	С		9.100	9.100	753.57	6.4
00-022-1809	0 I	C4 H12 AIN O12 Si5	Tetramethyl Ammonium Aluminum Silicate		3.670000	4.490000	6.360000	т	I-4	8.975	8.975	722.94	6.3
00-024-0893	0 0	Na4 (Al , Ga)3 Si3 O12 (O H)	Sodium Aluminum Gallium Silicate Hydroxide		3.650000	2.830000	2.590000	С	P-43n	8.880	8.880	700.23	4.1
00-024-1045	🔴 В	Na8 Al6 Si6 O24 C O3	Sodium Aluminum Silicate Carbonate		6.260000	3.630000	2.578000	С		17.709	17.709	5553.70	10.2
00-025-0797	🔴 B	Na ₆ Ca ₂ Al ₃ Ga ₃ Si ₆ O ₂₄ (Cr O ₄) ₂	Sodium Calcium Aluminum Gallium Chromium Oxide Silicate		3.746000	3.243000	2.164000	С	P-43n	9.180	9.180	773.62	6.5
00-025-0798	0 I	Na ₆ Ca ₂ Al ₂ Ga ₄ Si ₆ O ₂₄ (Mo O ₄) ₂	Sodium Calcium Aluminum Gallium Molybdenum Oxide Silicate		3.763000	2.658000	2.461000	С	P-43n	9.220	9.220	783.78	6.5
00-025-0799	0 I	Na ₆ Ca ₂ Al ₂ Ga ₄ Si ₆ O ₂₄ (W O ₄) ₂	Sodium Calcium Aluminum Gallium Tungsten Oxide Silicate		3.765000	2.305000	2.661000	С	P-43n	9.220	9.220	783.78	6.5
00-025-0802	0 I	Na6 Ca2 Al6 Si6 O24 (5 O4)2	Sodium Calcium Aluminum Silicate Sulfate	Haüyne, syn	3.711000	6.451000	2.624000	С	P-43n	9.095	9.095	752.33	6.4
00-027-0066	0 I	Ca2 Al2 Si O6 (O H)2	Calcium Aluminum Silicate Hydroxide	Bicchulite, syn	2.793000	3.610000	2.081000	С	I-43m	8.824	8.824	687.11	4.4
00-029-1184	🔴 В	Na ₆ Ca ₂ Al ₆ Ge ₆ O ₂₄ (WO ₄) ₂	Sodium Calcium Aluminum Germanium Tungsten Oxide		3.810000	2.694000	2.324000	С	P-43n	9.326	9.326	811.12	6.5
00-029-1186	0 I	Na ₆ Ca ₂ Al ₆ Si ₆ O ₂₄ (Te O ₄) ₂	Sodium Calcium Aluminum Silicate Tellurate		3.720000	2.635000	4.560000	С	P-43n	9.120	9.120	758.55	6.4
00-029-1221	🔴 B	Na6 Pb2 Al6 Si6 O24 (S O4)2	Sodium Lead Aluminum Silicate Sulfate		3.720000	2.637000	2.148000	С	P-43n	9.117	9.117	757.80	6.4
00-031-1271	0 0	1.08 Na2 O · Al2 O3 ·1.68 Si O2 ·1.8	Sodium Aluminum Silicate Hydrate		3.670000	6.360000	2.590000	С		8.980	8.980	724.15	6.3
00-032-1031	S	Na4 Al3 Si3 O12 I	Sodium Aluminum Iodide Silicate		3.680000	2.125000	2.409000	С	P-43n	9.011	9.011	731.65	6.3
00-032-1032	S	Na ₄ Al ₃ Si ₃ O ₁₂ Br	Sodium Aluminum Bromide Silicate		3.650000	2.106000	2.388000	С	P-43n	8.933	8.933	712.84	6.3
00-033-1164	🔵 S	Ag ₄ Al ₃ Si ₃ O ₁₂ I	Silver Aluminum Silicate Iodide		3.650000	2.105000	2.387000	С	P-43n	8.930	8.930	712.12	6.3
00-035-0002	🔴 B	Ca ₂ Si O ₂ F ₂	Calcium Fluoride Silicate		3.100000	3.205000	3.615000	т		6.937	8.488	408.46	6.9
00-035-0032	0 0	Na4 Si3 Al3 O12 Br	Sodium Aluminum Bromide Silicate		3.650000	2.450000	2.110000	С	P-43n	8.932	8.932	712.60	6.3
00-037-0196	● I	Na8 Al6 Si6 O24 (CN)2 ** H2 O	Sodium Aluminum Cyanide Silicate Hydrate		3.640000	6.310000	2.580000	С	I	8.921	8.921	709.97	6.3
🚖 00-037-0473	S	Na6 Ca2 Al6 Si6 O24 (5 O4)2	Sodium Calcium Aluminum Silicate Sulfate	Haüyne	3.723000	2.633000	2.150000	С	P-43n	9.120	9.120	758.53	6.4
🚖 00-037-0476	S	Na4 Al3 Si3 O12 Cl	Sodium Aluminum Silicate Chloride	Sodalite	3.624000	6.280000	2.093000	С	P-43n	8.878	8.878	699.85	6.2
		Nag (Alg Sig O 24) (N O 2) 3 H 2 O	Sodium Aluminum Nitrite Silicate Hydrate		3.660000	6.350000	2.110000	С		8.943	8.943	715.24	6.3. ¥
[Zeolite Classification	on (SOD	Sodalite)] And [Status (Primary, Alterr	nate)]										

🔁 🗎 💼 🕿 🕙 🖬 😰 🗐

Ţ

Цi

🚷 Search Results - 480 of 412,083

 \blacksquare O Type here to search

x^R ∧ ﷺ (^{3:55} AM 3/4/2019

() Type here to search

10:42 AM

3/4/2019

ជ×្រ

Ę

8

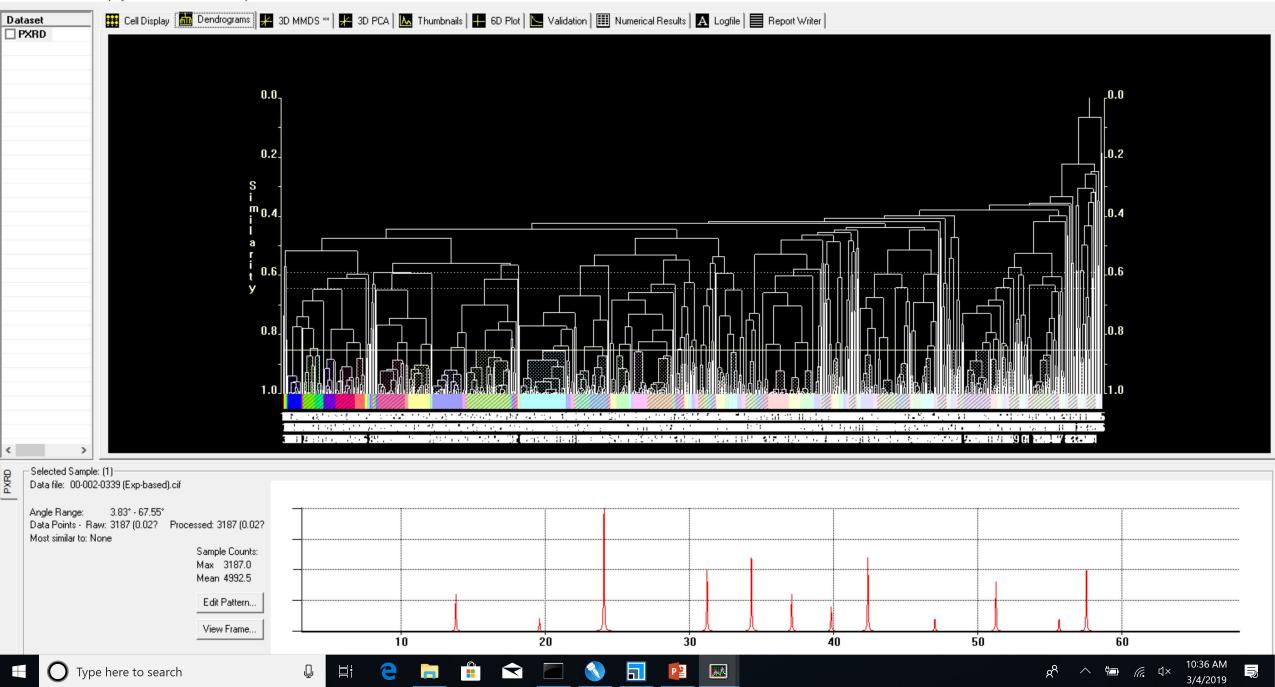
Ϋ́

 Image: Search History Results
 Search History Results
 Size+ Microanalysis

Results 1 Na4 Al3 Si3 O12 CI - 00-037-0476 - O **X** - 0 X File Field File Help My Defaults Oper \sim Unit Cell: 1 + 1 + 1 + Subsystem: Maximum Combined Bonding Radius: AuthCell Vol (Å3) D3 (Å) XtlCell a (Å) XtlCell c (Å) PD Toggle Modulation SYS Auth SPGR L11 Exp Show Atom Labels w Diffraction Data 00-00 00 2.380000 C P-43n 8.890 8.890 702.60 6.2 ^ 0% 25% 50% 75% 100% 125% 150% Show Polyhedra Toggle Animation 0 00 00-01 2.560000 C P-43n 8.874 8.874 698.81 6.2 00 00-01 1.012000 P-43n 8.207 8.207 552.78 4.0 C Atomic parameters are cross-referenced from PDF entry 04-008-5863 00-01 00 1.918000 C P-43n 8.150 8.150 541.34 4.0 00-01 00 2.580000 8.930 8.930 712.12 C T 6.3 HM:P-43n #218 00-01 00 1.124000 C P-43n 8.261 8.261 563.76 3.6 a=8.876Å 6.2 00-01 b=8.876Å 00 2.560000 X 9.0 00-01 c=8.876Å 00 6.450000 C P-43m 9.078 9.078 748.07 α=90.000° 751.09 00-01 00 C P-43m 9.090 9.090 6.4 2.872000 β=90.000° 8.583 00 I-4 8.817 649.53 00-01 3.570000 т 6.1 y=90.000° 00-02 00 6.470000 P-43n 9.082 9.082 749.11 6.4 C 00-02 00 2.628000 C 9.100 9.100 753.57 6.4 a little state to state and some some some some some 00-02 00 6.360000 т I-4 8.975 8.975 722.94 6.3 8.880 00-02 00 2.590000 C P-43n 8.880 700.23 4.1 25 30 35 40 45 50 55 60 00-02 00 2.578000 C 17.709 17.709 5553.70 10.2 20 (°) 00 2.164000 P-43n 9.180 9.180 773.62 6.5 00-02 C 00-02 00 2.461000 C P-43n 9.220 9.220 783.78 6.5 00-02 00 2.661000 C P-43n 9.220 9.220 783.78 6.5 00-02 00 2.624000 C P-43n 9.095 9.095 752.33 6.4 00-02 00 I-43m 8.824 8.824 687.11 2.081000 C 4.4 00 P-43n 9.326 9.326 00-02 2.324000 C 811.12 6.5 00-02 00 P-43n 9.120 9.120 758.55 4.560000 C 6.4 00-02 00 P-43n 2.148000 C 9.117 9.117 757.80 6.4 00-03 00 2.590000 C 8.980 8.980 724.15 6.3 00-03 00 2,409000 C P-43n 9.011 9.011 731.65 6.3 00-03 00 2.388000 C P-43n 8.933 8.933 712.84 6.3 00-03 2.387000 C P-43n 8.930 8.930 712.12 6.3 00 00-03 00 3.615000 Т 6.937 8.488 408.46 6.9 00-03 8.932 8.932 00 2.110000 C P-43n 712.60 6.3 00-03 00 2.580000 С 8.921 8.921 709.97 6.3 T 200-Sodalite P-43n Alternate Name: 00 2.150000 C 9.120 9.120 758.53 6.4 Comments * 00-8.878 8.878 P-43n 699.85 CAS Number: 1302-90-5 2.093000 6.2 00-03 00 2.110000 C 8.943 8.943 715.24 6.3 Entry Date: 09/01/1987 < > Modification Date: - Modifications: -[Zeolite Na4 Al3 Si3 O12 Cl - 00-0... 🗱 Na4 Al3 Si3 O12 Cl - 00-0... Results - 480 of 412,083 Search

Р 🎽

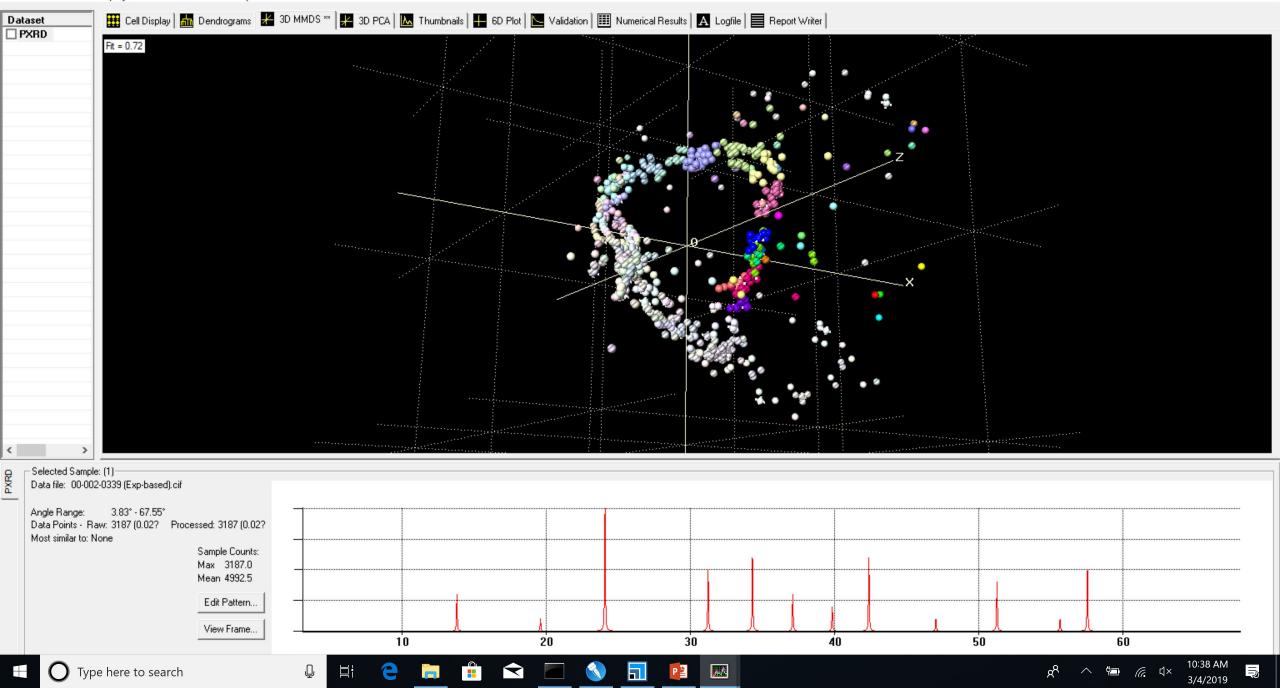
1


Ū

Ξi

 $\widehat{}$

🚾 Results Display - PXRD


File Edit Tools Display Pattern Window Help

×

D

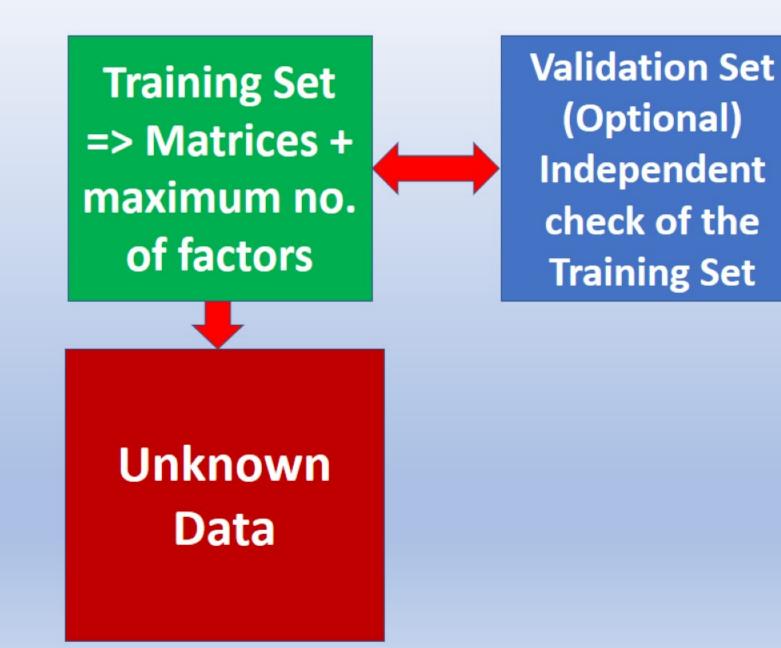
🚾 Results Display - PXRD

Cluster K5

PDF #	Cation	Framework 1	Framework 2	Framework 3	Extraframework
04-007-7045+	Na	Al	Ge	О	Br
04-017-7142	Na	Al	Ge	О	Br,S
04-009-4300+	Na	Al	Ge	Ο	Br,OH
04-009-6726+	Na	Al	Si	О	SO ₄ ,H ₂ O
04-011-7972	Na	Al	Ge	Ο	NO ₂
04-009-5216	Na	Al	Si	Ο	MnO ₄
04-014-4518	Na	Ga	Si	Ο	Ι
04-011-7466+	Na,K,Ca	Al	Si	Ο	SO_4
04-009-5213	Na	Al	Si	Ο	ClO ₄
04-016-7534	Na,K,Ca	Al	Si	Ο	S,SO ₄ ,Cl,H ₂ O
04-014-2217	Na	Al	Si	0	MnO ₄ ,OH
04-017-0541+2	Na,Ca	Al	Si	О	SO_4
04-013-1716	Na,K	Al	Si	Ο	Cl
01-076-8967+	Na	Al	Si	Ο	SO ₄ ,S ₃
01-076-6140	N(CH ₃) ₄	Ga	Ge	Ο	-

Cluster K

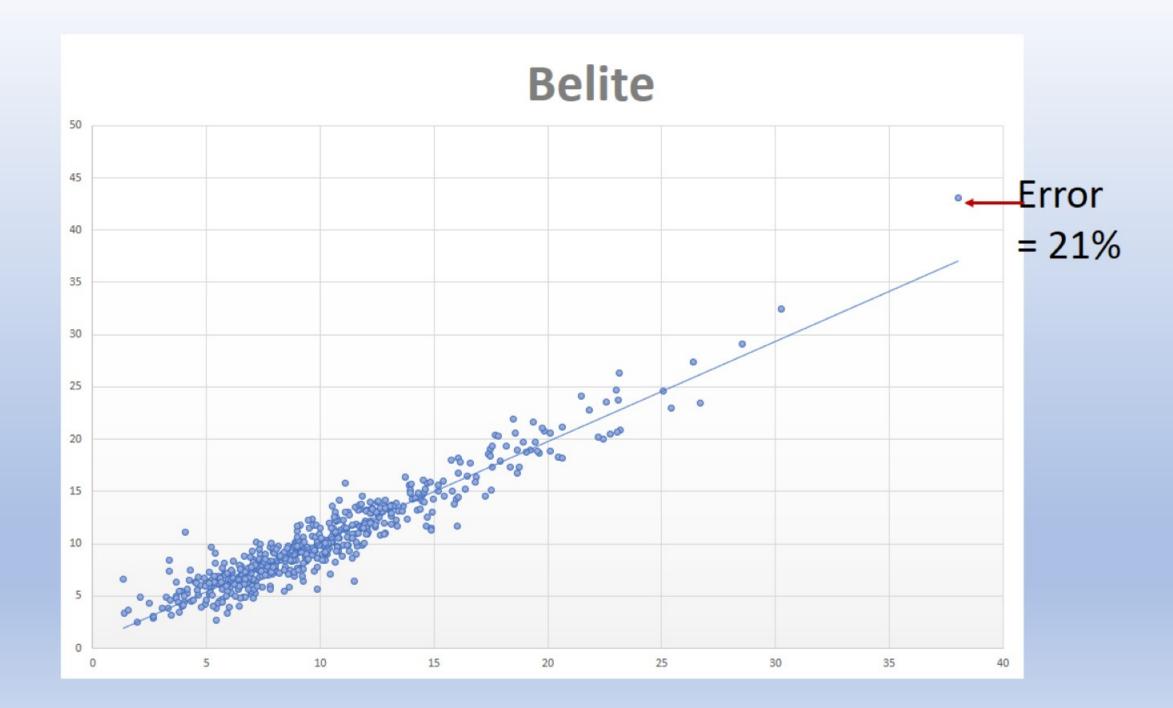
PDF #	Cation	Framework 1	Framework 2	Framework 3	Extraframework
00-038-0022	Na	Al	Si	О	SCN, H ₂ O
01-073-8449	Na	Al	Si	О	B(OH) ₄
01-077-1703	Na	Al	Si	О	SO_4 , S
04-010-2826	Na	Al	Si	О	SO_4 , S
01-085-8449	Na	Al	Si	О	SO ₄ , Cl
04-009-5214	Na	Al	Si	О	ClO ₄
04-009-9801	Na	Al	Si	Ο	S, H_2O
04-014-8480	Na	Al	Si	Ο	NO ₃
01-072-1614	Na	Al	Si	Ο	SO_4
04-013-6370	Na	Al	Ge	О	BH_4


The end of the list

\par Group E7: \par Sample # 124:\tab 00-050-1698 (Exp-based).cif. \par Group F7: \par Sample # 125:\tab 00-050-1699 (Exp-based).cif. \par Group G7: \par Sample # 112:\tab 00-047-0597 (Exp-based).cif. \par Group H7: \par Sample # 53:\tab 00-041-0072 (Exp-based).cif. \par Group I7: \par Sample # 37:\tab 00-035-0002 (Exp-based).cif. \par Group J7: \par Sample # 8:\tab 00-016-0612 (Exp-based).cif. \par Group K7: \par Sample # 57:\tab 00-041-0535 (Exp-based).cif. \par Group L7: \par Sample # 18:\tab 00-024-1045 (Exp-based).cif. \par Group M8: \par Sample # 48:\tab 00-039-0191 (Exp-based).cif. \par Group N8: \par Sample # 54:\tab 00-041-0073 (Exp-based).cif.

Partial Least Squares (PLS) as a Machine Learning Method

Data Sets


- Training data: {Powder diffraction patterns of mixtures. (Any no. of components in mixture is allowed)} + {Known composition of mixtures}
- Validation data: : {Powder diffraction patterns} + {Known compositions}
- Unknowns: {Powder diffraction patterns}

PLS on Cement Clinker Data

- 49 training patterns.
- 44 validation patterns.
- 538 unknown samples.
- 18 possible components: AliteM3, AliteM1, sumAlite, Belite, C3ACubic, C3AOrthorhombic
- Fast: Training + validation + unknowns takes < 20s on 3yr old laptop with 4 cores.
- Gives esds.

