HR-XRPD and Polymorph Stability

HR-XRPD, A CRUCIAL FACTOR IN THE DETERMINATION OF THE STABILITY HIERARCHY OF POLYMORPHS BY TOPOLOGICAL AND EXPERIMENTAL PRESSURE-TEMPERATURE DIAGRAMS

Ivo B. Rietveld, M. Barrio, J.-Ll. Tamarit, R. Céolin
This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – www.icdd.com/ppxrd

ICDD Website - www.icdd.com
Paracetamol

Two known polymorphs:

Form I: Monoclinic P2₁/a fusion: 442.8 K, 191.4 J g⁻¹

Form II: Orthorhombic Pbca fusion: 430.2 K, 181.7 J g⁻¹

Which is the most stable?
Paracetamol

Form II

Form I

430 K

448 K

T →
Paracetamol

Where is the equilibrium between form I and form II?
Gibbs Energy

\[G = H - TS \]

\[dG = SdT + Vdp \]

G is characteristic for the variables:

Temperature and Pressure
Gibbs Energy

Form I

Form II
Clapeyron Equation

The slope of a two-phase equilibrium:

\[
\frac{dp}{dT} = \frac{S}{v} = \frac{H}{T v}
\]

Pressure can be incorporated by X-ray diffraction without even measuring it!
Paracetamol

Form II

Form I

430 K

443 K

T →
Paracetamol

Volume Differences

Enthalpy Differences At 442 K

\[\Delta v \]

\[\Delta H_{\text{Liquid}} \]

Form I

Form II

Specific volume (cm3g$^{-1}$)

Temperature (K)

280

330

380

430

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

\[dp/dT \ (I \rightarrow L) = 3.7 \text{ MPa K}^{-1} \]

\[dp/dT \ (II \rightarrow L) = 3.1 \text{ MPa K}^{-1} \]

\[dp/dT \ (I \rightarrow II) = -0.3 \text{ MPa K}^{-1} \]

191.4 Jg$^{-1}$

3.4 Jg$^{-1}$
Pressure, Triple Points, and Alternation Rule

The pressure of the system is its vapor pressure.

The pressure of the system is its vapor pressure.

At Fusion: Three Phases → Triple point

\[dp/dT \ (I \rightarrow L) = 3.7 \, \text{MPa K}^{-1} \]

Rigid DSC capsule

Vapor

Solid

443 K

Vapor

Triple point

Melting point 443 K

\[p \]

\[P_{\text{vap}} \]
Paracetamol

\[
dp/dT (I \rightarrow L) = 3.7 \text{ MPa K}^{-1}
\]
Paracetamol

\[dp/dT (I \rightarrow L) = 3.7 \text{ MPa K}^{-1} \]
\[dp/dT (II \rightarrow L) = 3.1 \text{ MPa K}^{-1} \]
\[dp/dT (I \rightarrow II) = -0.3 \text{ MPa K}^{-1} \]
Paracetamol

Bakhuis-Roozeboom
4 Phases \rightarrow 4 Phase Diagrams - 1901
Paracetamol
Experimental Verification

Experimental Triple Point
T = 489.6 K
p = 258.7 MPa

J. Ledru et al., J Pharm Sci 96 (10), 2007, 2784-2794
Biclotymol
Pulmonary antiseptic

Form I
P2_{1}/c

T_{fus}: 400 K
ΔH_{fus}: 36.6 kJ mol^{-1}

Form II

374 K
28.8 kJ mol^{-1}
Biclotymol

Volume of form I and liquid

Melting peaks versus pressure
High Pressure DTA

E = Sample (échantillon)
T = Reference (témoin)

Supply of pressure transmission liquid

Heater block

Thermocouples

Manometer

Piston

\[\Delta T \]
Biclotymol

Form II - L

Form I - L

Pressure (MPa)

Temperature (K)

-150
-100
-50
0
50
100

320
350
380
410
440
Biclotymol

Le Chatelier

$H_{\text{phase A}} < H_{\text{phase B}}$

T \rightarrow

Observation
Form II into Form I
transition exothermic

$H_{\text{form I}} < H_{\text{form II}}$

I \rightarrow II

T \rightarrow

![Graph showing the transition of Form II to Form I with temperature and pressure axes]
Biclotymol

Overall monotropy

Céolin et al. J. Pharm Sci 97 (9), 2008, 3927-3941
Dimorphic Tyrosine Ethyl Ester
Prodrug against tyrosine deficiency
Crystal Structure

Ethyl ester, Phase II:

orthorhombic P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}
P-T, Necessary Data

DSC: temperature and enthalpy

X-ray: Volume difference
P-T, Necessary Data

DSC: temperature and enthalpy

DSC: T II \rightarrow I and heating rate
Clapeyron Equation:
\[
\frac{dp}{dT} = \frac{H}{T} \frac{1}{v}
\]

The slope of a phase equilibrium

By DSC, high pressure DTA and X-ray:
- Transition temperature
- Enthalpy of transition
- Volume change at transition

Topological Pressure – Temperature Diagram
Construction of P-T Diagram

Pressure (MPa) vs. Temperature (K)

Melting point solid II
\(P, T, \Delta H \)

Boiling point
\(T = 590 \text{ K} \)
\(\Delta H = 65 \text{ kJ/mol} \)
\(P = 1 \text{ bar} \)

\[\ln P = \frac{H}{RT} + B \]
Dimorphism stability regions (P, T)
Specific volume of liquid

without measurement

\[
\frac{dp}{dT} = \frac{H}{T \cdot v}
\]

Céolin, Rietveld, J Therm Anal Calorim 102, 2010, 357-360
Rietveld et al. J Pharm Sci submitted (tyrosine ethyl ester, previous slides)
Benfluorex (Mediator)
anorectic and hypolipidemic agent

Form I highest melting point
Stable form?

Form I
Monoclinic
P2₁/n, Z = 4

Form II
Orthorhombic
Pbca, Z = 8
Benfluorex
High Pressure Data

Lines parallel…
- Measured
- Calculated
No v_{spec} of liquid

No triple point!?
From melting enthalpies:
\[H_{II} < H_I \]

From X-ray measurements
\[v_{II} < v_I \]

Le Chatelier:
- \(P \rightarrow \) decreases
- \(V \rightarrow \) decreases
- \(T \rightarrow \) increases
- \(H \rightarrow \) increases

Triple point down
Inconsistent

Triple point up
Consistent
Benfluorex

A transition at about 420 K!
Invisible in all DSC measurements
Benfluorex

Temperature (°C)

Area = 521.388 mJ
Delta H = 104.2775 J/g
Onset = 160.98 °C
Peak = 162.50 °C

Heat from 100.00°C to 180.00°C at 1.00°C/min

Black: 0.05 K/min
Red: 0.1 K/min

Sample Weight: 5.000 mg

Comment:
benfluorex lotto 0640718 n°9 pesato il 9-07-10 5 mg misurato con testa a -30°C dai 100°C
Solid-solid transition heating rate dependent and disappearing in II melt
Benfluorex II is stable at room temperature (RT).
Pressure – Temperature - Composition

D-Camphor

DL-Camphor
Experimental P-T data

Solid-solid equilibria!

Vapor pressure ≈ 0.05 MPa
P-T-x Phase Diagram of the camphor melting transition
Pressure is the pressure of the system, not 1 atm!

Always check heating rate dependence of solid-solid transitions!
Required data:
DSC
X-ray
High Pressure – Differential Thermal Analysis

Glass transition
Liquid volume

Specific volume of liquid serves the topological approach
Toolbox
Conclusions 3/4

Le Chatelier

\[H_{II} \rightleftharpoons H_{I} \]
\[T \rightarrow \]
\[p \uparrow \]
\[v_{II} \]
\[v_{I} \]

Clapeyron

\[\frac{dp}{dT} = \frac{S}{v} = \frac{H}{T} v \]

Vapor pressure

\[\ln P = \frac{H}{RT} + B \]

Alternation Rule

Triple points

Each case is a different puzzle!
4 phases (solid 1, solid 2, liquid, vapor): 4 phase diagram options
Acknowledgements

P. Espeau
J. Ledru
M.-A. Perrin
J.-P. Gauchi
F. Leveiller
C.T. Imrie
C.R. Pulham
J.M. Hutchinson
E. Maccaroni
N. Mahé
B. Nicolai
J v. d. Streek
L. Malpezzi
W. Paneri
N. Masciocchi
Carnot
Clapeyron
Le Chatelier
Clausius
Helmholtz
GIBBS
Kirchhoff
Riecke
Bakhuis-Roozeboom
Ostwald
Tamman