SYNTHESIS AND CRYSTAL STRUCTURES OF Bi$_2$Ln$_4$O$_9$ MONOCLINIC PHASES

Yucheng Lan†, Xiaolong Chen ‡

† Department of Physics, Temple University, PA 19122
(Email address: ylan@astro.temple.edu)

‡ Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

Two monoclinic phases (Bi$_2$La$_4$O$_9$ and Bi$_2$Nd$_4$O$_9$) were synthesized in the binary system Bi$_2$O$_3$-Ln$_2$O$_3$ (Ln are rare earth element from La to Lu). No other monoclinic phases had been observed in the system. The reason was contributed to the decreasing ionic radius. The crystal structures had been determined by X-ray powder diffraction and refined by the Rietveld method. Figure 1 plotted the X-ray diffraction pattern of Bi$_2$Nd$_4$O$_9$. Bi$_2$La$_4$O$_9$ is isostructural with Bi$_2$Nd$_4$O$_9$. The compounds crystallize in monoclinic symmetry with a subcell space group of C2/m and Z=2. Bi$_2$Nd$_4$O$_9$ possesses the lattice parameters a=6.7037(2)Å, b=3.9062(1)Å, c=3.9542(1)Å, and $\beta=125.258(1)^\circ$ while Bi$_2$La$_4$O$_9$ a=6.8290(3)Å, b=3.9887(1)Å, c=4.0524(1)Å and $\beta=125.094(3)^\circ$. The lattice parameters shrank with Ln radius. Rietveld refinement indicated that Ln and Bi randomly distributed on the cation site. In addition, the superstructure had been observed in the compounds. Figure 2 showed the electron diffraction pattern along [100]. The weak spots indicated a triple superstructure along [001]. The superstructure was more noticeable in Bi$_2$Nd$_4$O$_9$ than in Bi$_2$La$_4$O$_9$. The existence of the superstructure can explain the large isothermal temperature factors in this kind of compounds.