X-RAY DIFFRACTION CHARACTERIZATION OF POLYMER INTERCALATED GRAPHITE OXIDE

Thomas N. Blanton and Debasis Majumdar
Eastman Kodak Company, Rochester, New York 14650-2106, USA

ABSTRACT
Graphite oxide (GO) is generated by treating graphite with strong oxidizers. GO retains the structure of graphite, but with a larger and irregular basal plane spacing. The oxidation of graphite results in the formation of epoxide groups as well as C-OH and COOH groups. It is the presence of some of these moieties that allows GO to be dispersed in water, allowing for its use in waterborne formulations. Although GO does not possess the electrical properties of single-sheet graphene, it can be swelled in water, which allows for intercalation of hydrophilic polymer between GO sheets, resulting in a composite that can be coated to produce a continuous film. After coating, it may be possible to chemically convert GO to a reduced graphite oxide (r-GO) with improved electrical conductivity. X-ray diffraction (XRD) is ideally suited to evaluate GO – polymer composite samples for evidence of intercalation or exfoliation of GO. Examples of GO – polymer analysis by XRD are presented, along with results that demonstrate the effect of relative humidity (RH) on neat GO. Knowing the ambient RH during XRD data collection was found to be important in order to assess the extent of polymer intercalation within the GO lattice.

INTRODUCTION
Graphite-based nanoplatelets have garnered considerable attention because of their unique mechanical, thermal and electrical properties (Novoselov et al., 2004). Exfoliated graphite-based platelets, when reduced to a single layer of graphene, have the potential of revolutionizing the flexible electronics market (Geim and Novoselov, 2007). However, the exfoliation process is often cumbersome and has not been reduced to a robust manufacturable practice. Some of the commercially marketed graphene powders or inks are micronized graphite, which often does not have the transparency and conductivity required for display applications. In an interesting approach, several groups have focused on creating graphite oxide (GO), sometimes erroneously referred to as graphene oxide, which is relatively easy to exfoliate in aqueous media and can then be subsequently reduced by chemical means or heat treatment. This approach is attractive, since the process chemistry for creating graphite oxide in large quantities is well established and GO is easily dispersed in water (Dreyer et al., 2010). Various methods of oxidation of graphite can be found in the literature and the chemical structures created by these methods may vary (Dreyer et al., 2010). A commonly used oxidation method is based on the Hummers method (Hummers and Offeman, 1958) or modifications thereof. A proposed molecular structure for GO is based on the Lerf-Klinowski model (Lerf et al., 1998). Per this model, the GO structure includes regions with unoxidized benzene rings and regions with aliphatic six-membered rings; the oxygen-containing species include epoxides (1,2-ether) and C-OH groups with a sprinkling of COOH groups at the edges. Reduction of GO creates a partially reduced version of graphite oxide (r-GO), which is significantly more conductive than GO (Gilje et al., 2007; Yang et al., 2009). Nanocomposites of
GO – polymer have also been studied (Tung et al., 2011; Vuluga et al., 2011). The hydrophilic nature of GO and its layered structure makes it a good host for water-soluble or water-dispersible polymers to intercalate inside the GO lattice.

XRD is an important analytical technique for characterization of intercalation and exfoliation in composites composed of polymer and layered materials (Blanton et al., 2000). XRD can accurately measure the interlayer or basal plane d-spacing, for example, of GO and monitor intercalation of any species in the gallery of the GO lattice. Whereas the interlayer spacing of graphite is 3.35 Å, conversion to GO results in an increase in this basal plane spacing that is due to functionalization of graphite with oxygen-containing groups (Kou et al., 2010). To determine if intercalation or exfoliation due to polymers in the GO lattice has occurred in GO – polymer composites, a baseline d(001) basal plane spacing for neat GO is required. A literature review of XRD results for analysis of GO reveals a range of d(001) values. Selected publications indicate this range is from d(001) = 7.8 to 12 Å (Bissessur et al., 2006; Cote et al., 2009; Kou et al., 2010; Liu et al., 2002; Stankovich et al., 2007; Zhao et al., 2010). In an extreme drying study, Jeong et al. (2009) annealed GO at 200 ºC for 2 h, resulting in d(001) = 6.2 Å. However, further annealing resulted in degradation of GO, indicating thermal processing at this temperature chemically alters GO. In a modeling study (Boukhvalov and Katsnelson, 2008) of graphite oxide with 25% coverage by hydroxyl groups, the interlayer distance was found to be about 7 Å. Since a study by Hofmann and collaborators in 1932 (Hofmann et al., 1932), it is known that GO can be intercalated by water. The range of d(001) spacings mentioned previously suggests that XRD data were collected with varying amounts of water intercalated between GO layers, likely the result of data collection at different relative humidity (RH). In this study, the effect of RH on the GO interlayer spacing is evaluated. Upon establishing baseline parameters, changes in the GO interlayer spacing that are due to interaction of GO in a polymer matrix can be determined.

EXPERIMENTAL
Sample preparation
0.5 wt% GO dispersed in water (N002PS) was obtained from Angstron Materials. Neat GO coatings were formed by depositing a few drops of GO solution onto Teflon® or glass microscope slides followed by drying in ambient air. Solutions coated on Teflon® could be removed after drying, resulting in self-supporting films. Solutions coated on glass were not removed after drying. Aqueous GO – polymer composite solutions were made by adding GO solutions to 0.5 wt% polymer solutions to obtain the desired final weight ratio of GO to polymer. Films were prepared on glass microscope slides using the same method as described for neat GO coatings.

X-ray diffraction
X-ray diffraction (XRD) data were collected using a Rigaku D2000 diffractometer equipped with a copper rotating anode, diffracted beam monochromator tuned to Cu Kα radiation, and a scintillation detector. Coated films were analyzed in ambient air or under controlled humidity conditions using an environmental cell with a nitrogen-water bubbler. The RH inside the environmental cell was monitored using a VWR digital hygrometer.

RESULTS and DISCUSSION
Reflection and transmission mode XRD patterns collected at 30% RH for a self-supporting film of GO are shown in Figure 1. In reflection mode, the XRD pattern shows a strong (001) peak,
indicating preferred orientation of graphene oxide basal planes parallel to the sample plane. The (001) d-spacing is 9.1 Å. Based on the (001) peak width, the crystallite size was determined using the Scherrer technique and was found to be 41 Å in the [00l] direction. All films coated from commercial GO solutions were found to have a minor amount of graphite, observed in Figure 1(a). In transmission mode, the XRD pattern shows a weak (100) peak, indicating preferred orientation of (100) planes perpendicular to the sample plane. The (100) d-spacing is 2.12 Å. Based on the (100) peak width, the crystallite size was determined using the Scherrer technique and was found to be 71 Å in the [h00] direction.

![Figure 1](image)

Figure 1. XRD patterns for a self-supporting GO film: (a) reflection mode geometry (b) transmission mode geometry. Data collected at 30% RH. Graphite impurity peak indicated by circle in reflection mode XRD pattern.

Initial studies of a GO film on glass found that this sample had different (001) d-spacings when analyzed on different days. Humidity was believed to be the likely cause. XRD patterns (Figure 2) collected at variable RH confirmed this hypothesis. The GO d(001) spacing increases (smaller 2θ) with increasing humidity, which is due to water insertion between (00l) planes. Note the (001) GO peak intensity is observed to increase as more water intercalates the GO lattice. The (001) graphite diffraction peak, which is due to residual graphite in commercial GO solutions, serves as an internal standard for measurement of the GO d(001) spacing. A detailed evaluation of the effect of RH on the GO basal plane spacing was performed using a GO on glass sample in

![Figure 2](image)

Figure 2. Reflection mode XRD patterns for GO coated on glass, data collected at 0% (sample in environmental cell purged with dry N₂), 24% (sample in lab ambient during winter season) and 59% (sample in lab ambient after recent rain storm) RH. Graphite (001) peak at 26.62° 2θ.
the RH controlled environmental cell. Diffraction patterns were collected at a specified RH and \(d(001) \) spacings were determined (Figure 3). From this data, it is apparent that the range of reported \(d(001) \) spacings for neat GO in the literature can be attributed to the RH during data collection, demonstrating the importance of documenting (and reporting) RH when presenting XRD results for GO materials.

![Diffraction Patterns](image1)

Figure 3. In situ variable humidity XRD patterns for GO coated on glass (reflection mode geometry). Sample was equilibrated 15 min in an environmental cell at a specified RH before XRD data collection.

<table>
<thead>
<tr>
<th>Scan #</th>
<th>%RH</th>
<th>(d)-spacing (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>7.79</td>
</tr>
<tr>
<td>2</td>
<td>5.66</td>
<td>8.21</td>
</tr>
<tr>
<td>3</td>
<td>12.15</td>
<td>8.53</td>
</tr>
<tr>
<td>4</td>
<td>22.42</td>
<td>9.05</td>
</tr>
<tr>
<td>5</td>
<td>39.91</td>
<td>9.36</td>
</tr>
<tr>
<td>6</td>
<td>49.98</td>
<td>9.72</td>
</tr>
<tr>
<td>7</td>
<td>60.70</td>
<td>10.165</td>
</tr>
<tr>
<td>8</td>
<td>69.74</td>
<td>10.592</td>
</tr>
<tr>
<td>9</td>
<td>79.18</td>
<td>10.952</td>
</tr>
<tr>
<td>10</td>
<td>89.17</td>
<td>11.405</td>
</tr>
<tr>
<td>11</td>
<td>99.79</td>
<td>11.957</td>
</tr>
<tr>
<td>12</td>
<td>109.58</td>
<td>11.034</td>
</tr>
<tr>
<td>13</td>
<td>79.53</td>
<td>10.758</td>
</tr>
<tr>
<td>14</td>
<td>66.96</td>
<td>10.202</td>
</tr>
<tr>
<td>15</td>
<td>60.10</td>
<td>9.846</td>
</tr>
<tr>
<td>16</td>
<td>49.43</td>
<td>9.649</td>
</tr>
<tr>
<td>17</td>
<td>29.96</td>
<td>9.361</td>
</tr>
<tr>
<td>18</td>
<td>20.70</td>
<td>8.665</td>
</tr>
<tr>
<td>19</td>
<td>19.59</td>
<td>8.723</td>
</tr>
<tr>
<td>20</td>
<td>16.91</td>
<td>8.417</td>
</tr>
<tr>
<td>21</td>
<td>8.50</td>
<td>8.224</td>
</tr>
<tr>
<td>22</td>
<td>0.00</td>
<td>7.705</td>
</tr>
</tbody>
</table>

Having established RH versus \(d(001) \) for GO films, attention is now placed on GO – polymer composites. In Figure 4, XRD patterns for GO – polyethylene oxide (PEO) films on glass collected at 30% RH are shown. Based on the shift in the \(d(001) \) diffraction peak to lower 20,

![XRD Patterns](image2)

Figure 4. Reflection mode XRD patterns for GO – PEO coated on glass, data collected at 30% RH. Weight percent levels of PEO are 0 wt%, 50 wt%, 70 wt%, noted on the plot. Graphite (001) peak at 26.62° 2θ. (normalized intensities).
PEO is observed to intercalate the GO lattice. At 50 wt% PEO \(d(001) = 15.2 \, \text{Å} \) compared to \(d(001) = 9.0 \, \text{Å}\) for neat GO at 30% RH. An increase in wt% PEO (70 wt%) did not result in further intercalation as there was no observed increase in the GO \(d(001)\) spacing. With PEO polymer intercalated in the GO lattice, the effect of humidity on this composite was evaluated. In Figure 5, the \(d(001)\) spacing changes from 15.5 Å at 50% RH to 14.7 Å at 0% RH for the GO:PEO 50:50 composite film coated on glass. Although this change is smaller than what was observed in neat GO, it is a reminder that the RH must be noted when collecting XRD data for GO or GO – polymer samples.

![Figure 5](image)

Figure 5. Reflection mode XRD patterns for GO – PEO, 50 wt% each, coated on glass, data collected at 0 and 50% RH, noted on the plot. Graphite (001) peak at 26.62° 2θ. (normalized intensities).

In Figure 6, XRD patterns for GO – polyvinyl pyrrolidone (PVP) films on glass collected at 35% RH are shown. Similar to what was observed with GO – PEO, PVP is observed to intercalate the GO lattice at 50 wt% PVP with the \(d(001) = 20.0 \, \text{Å}\), at 70 wt% PVP \(d(001) = 31.5 \, \text{Å}\), and at 90 wt% PVP, it appears GO is exfoliated based on the absence of any \(d(001)\) diffraction peak.

![Figure 6](image)

Figure 6. Reflection mode XRD patterns for GO – PVP coated on glass, data collected at 35% RH. Weight percent levels of PVP are 0 wt%, 50 wt%, 70 wt%, 90 wt%, noted on the plot. Graphite (001) peak at 26.62° 2θ. (normalized intensities).
Before defining a GO composite sample as exfoliated, further analysis should be considered. The GO – PVP XRD patterns in Figure 6 all started at 2° 2θ (44 Å using Cu Kα). It is possible to have layered material composites with d(001) > 44 Å (Majumdar et al., 2009). Therefore, diffraction patterns collected at lower 2θ are required for the instrument conditions used in this study to observe larger d(001) spacings. Low-angle XRD patterns for GO – PVP at 90 wt% PVP are shown in Figure 7. The initial XRD pattern from Figure 6 started at 2° 2θ with no (001) GO – PVP diffraction peak observed. A scan starting at 1° 2θ using the same diffractometer conditions including slits, does show evidence of a diffraction peak, however, significant scatter from the direct beam is present. Using smaller divergence, scatter, and receiving slits allows for collection of XRD data started at 1° 2θ that shows a resolved d(001) GO – PVP 90 wt% diffraction peak with d(001) = 53.2 Å, indicating the GO – PVP composite in this case is intercalated, not exfoliated. Another option to improve observation of large (d(001) d-spacing data would be to change the X-ray source to a longer wavelength, although attenuation of intensity by air needs to be considered. In the situation in which collecting low-angle diffraction data using optimized diffractometer conditions still results in the absence of a d(001) diffraction peak, conclusive evidence of exfoliation in layered material composites can be achieved using transmission electron microscopy (TEM) to examine cross sections of the composite film.

![Graph](image)

Figure 7. Reflection mode XRD patterns for GO – PVP, 90 wt% PVP, data collected at 35% RH: (a) the initial XRD scan from Figure 6 started at 2° 2θ, 1/2° divergence slit, 1/2° scatter slit, 0.6 mm receiving slit. (b) a scan starting at 1° 2θ using the instrument conditions as 8(a). (c) a scan started at 1° 2θ, 1/4° divergence slit, 1/4° scatter slit, 0.15 mm receiving slit (normalized intensity).

SUMMARY

- Graphite oxide, GO, has a hexagonal lattice with a = 2.12 Å and c variable depending on ambient humidity.
- Because d(001) varies with humidity, the % RH during XRD data collection must be recorded to assess accurately any real changes in the GO basal plane spacing. Collection of data at 0% RH would be the easiest experimental condition to replicate.
- GO can be intercalated with water-soluble polymers such as PEO and PVP.
- The amount of intercalation, based on the GO – polymer d(001) spacing is dependent upon polymer type and amount of polymer present, and to a lesser extent the % RH during data collection.
• Low-angle XRD patterns should be collected when GO – polymer composites appear exfoliated based on typical XRD data collection conditions. Further evidence of exfoliation should be confirmed using TEM.

REFERENCES

