Ab initio crystal structure determination of two polymorphic modifications of a local anesthetic agent, Tetracaine Hydrochloride ...

Robert J. Papoular Leon Brillouin Laboratory papou@Ilb.saclay.cea.fr

PPXRD-9 - 23 Feb' 10 - Hilton Head Island, SC, USA

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

With :

APS / ANL **B.H.** Toby

Univ. Moscow N.B. Leonidov J. Doebbler A.V. Dzyabchenko

Univ. Tours V. Acatonov H. Allouchi

Univ. Rouen M.-N. Petit

ENSCP, Paris J.-M. Cense

2 / 30

What this talk is really about :

Ab initio structure solution

using :

High-resolution XRPD [indexing] Molecular modeling [starting flexible molecule] Direct space methods [Monte - Carlo] Hydrogen bonds [chemical sense]

 Motivation (a) Polymorphism known tetracaine HC Ł ur 	OVERVIEW : induced by freeze nknown leocaine	3 / 30 e-drying Leonidov (1995)
(b) Anesthetics (c) Ab Initio structure solution	: local (eyes) n : a textbook examp	ole ?
 Previous work on TetraCaine (a) Giron <i>et al</i> (1997) (b) Now 	HydroChloride [TC ell <i>et al</i> (2002) (c) S	C <mark>HC</mark>] chmidt <i>et al</i> (2006)
Synchrotron X-ray diffraction	n experiments [11-	BM @ APS / ANL]
• OUR TALK : Leocaine = Mode with a twist : Preferred Orient	eling + Indexing + D tation included in M	irect Space Methods onte - Carlo
Modeling (One molecule , I Indexing (DICVOL : ok ; N Ab Initio Solving (FOX ! , I	PMC , four molecule I-TREOR-09 : periec EXPO 2009 ?)	es) t)
Inter- / Intra- molecular H- bo	nds	

4/30 I. MOTIVATION (1) : LEOCAINE , a new effective drug

Paper

Ł

Patent

United States Patent not

[Leocaine--a new generation of local anesthetics] [Vestn Oftalmol. 1995

PubMed Vestn. Oftalmol. 1995

U.S. National Library of Medicine National Institutes of Health

Display Settings: Abstract

Performing your original search, leonidov leocaine, in PubMed will retrieve 2 records

Vestn Oftalmol. 1995 Oct-Dec;111(4):19-21.

[Leocaine--a new generation of local anesthetics]

[Article in Russian]

Leonidov NB, Nesterov AP, Uspenskaia SI, Knizhev VA, Fitilev SB, Avramenko NN.

Leocaine is a new crystal beta-modification of beta-dimethylaminoethyl ether of n-butylaminobenzoic chemical formula is the same as for dicaine, but it has a number of advantages over this drug. The ar leocaine is 2.5 times higher than that of dicaine. By the duration and depth of anesthesia 0.3% leocai corresponds to 1% dicaine. Leocaine exerts no toxic effect on the corneal epithelium and its instillation cavity does not result in the reactive dilatation of corneal or episcleral vessels. Leocaine solution is st Clinical trials of leocaine carried out on more than 2500 patients showed virtually complete absence c Commercial manufacture of leocaine is launched at present. One of the commercial preparations rep of the active substance in isotonic NaCl solution. Another drug contains, besides leocaine, methylcell leocaine are recommended for practical ophthalmology instead of dicaine for local anesthesia. The d medical use and commercial manufacture by the Ministry of Health and Medical Industry of Russia.

PMID: 8604531 [PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

Leo	nidov	1995
[54]	CRYSTALLE 2-DIMETHYI BUTYLAMIN HYDROCHL PRODUCTIC PHARMACE ANAESTHES	NE MODIFICATION OF LAMINOETHYL-N- KOBENZOATE ORIDE, METHOD FOR IN THEREOF AND UTICAL PREPARATION FOR LA OF EYES, BASED THEREON
[76]	Inventor: N Z M	ikolal B. Leonidov, ulitsa atonnaya, 12. korpus 1. kv. 158, loscow, Russian Federation
[21]	Appl. No.:	958,106
[22]	PCT Filed:	Aug. 19, 1991
[86]	PCT No.:	PCT/SU91/00168
	§ 371 Date:	Dec. 22, 1992
	§ 102(e) Date:	Dec. 22, 1992
[87]	PCT Pub. No	.: WO93/04034
	PCT Pub. Da	te: Mar. 4, 1993
[30]	Foreign A	application Priority Data
Apr Apr	r. 30, 1991 [RU] r. 30, 1991 [RU]	Russian Federation
[51] [52] [58]	Int. Cl. ⁶ U.S. Cl. Field of Searc	C07C 229/34 560/49 h
[56]	1	References Cited
	· P	UBLICATIONS

Owens, J. Ass. Off. Anal. Chem. 55(6) 1171-4, (1972).

... while the crystal structure remains unknown !

I. MOTIVATION (2) : Structure Solving Strategy

Preliminary modeling : (Energy minimization)

(i) One molecular unit Ł Flexible model

(Hyperchem[™])

(ii) Molecular Packing (unit cell known)

Ł Crystal structure prediction

PMC, Dzyabchenko

Ab initio solving :

(i) Direct Methods(Phase Problem)

FAILS !

(ii) Direct Space Methods

Monte-Carlo Parallel tempering

(FOX, Favre-Nicolin)

Post modeling :

(Energy minimization)

Stability check : Crystal approximated by a few molecules

(4 for leocaine)

(Hyperchem[™])

5 / 30

6 / 30 II. PREVIOUS WORK (1) : Tetracaine Hydrochloride

Intermolecular H - bonds

Triclinic P -1

 $V = 822 Å^3$

2 - (dimethylamino)ethyl p - butylaminobenzoate hydrochloride

II. PREVIOUS WORK (2) : Tetracaine Hydrochloride

 Giron *et al* TCHC polymorphism (DSC , HT XRPD)
 J. Therm. Anal. (1997)
 6 anhydrous crystalline forms ... 2 stable at T = 300 K.

 Schmidt *et al* TCHC mod.4 (SXD) Pharmaceutical Research (2005) Polymorphism caused by conformal flexibility of the molecules ...

 Hamaed *et al* TCHC (SXD, ³⁵CI NMR) JACS (2008) 7 / 30

II. Our Experiments (1) : Sample characterization

• Electron microscopy (SEM)

Raman spectroscopy (FTR)

8 / 30

9 / 30 II. Our Experiments (2) : High-resolution Synchrotron XRPD

11-BM beamline @ APS / ANL (Argonne , USA)

II. Our Experiments (3) : High-resolution Synchrotron data

10 / 30

11 / 30 III. Our Structure Solutions (1) : INDEXING with N-TREOR-09

	Total number of plausible solutions = 3										
Tetracaine	 sol. м20	a	b	c	alpha	beta	gamma	2Theta-shift	NIX	vol.	
	1 31 2 3	13.7376 24.1806	8.5802	7.4115	98.6903	90.8451 102.1412	106.1796	0.0020	0	828. 3039.	
(ICHC)	3 3 24.1969 6.8476 18.8098 90.0000 102.0099 90.0000 -0.0020 2 3048. NIX is the number of unindexed lines.										
	Total number of plausible solutions = 4										
Leocaine	 sol. м20	a	b	с	alpha	beta	gamma	2Theta-shift	NIX	vol.	
poly # 1	1 22 2 2 3 2	25.4800 12.4406 12.6063	6.2351 12.4406 12.6063	10.9343 77.8686 76.9181	90.0000 90.0000 90.0000	96.8923 90.0000 90.0000	90.0000 120.0000 120.0000	-0.0040 -0.0020 0.0000	0 : 6 1 1 1	1725. 0437. 0586.	
	4́ ĺ NI×is th	NaN e number	6.2364 of unind	NaN lexed lin	90.0000 es.	90.0000	90.0000	-0.0060	1	NaN	
Leocaine	 sol. м20	a	b	c	alpha	beta	gamma	2Theta-shift	NIX	 Vol.	
poly # 2	1 28 2 6	25.0079 24.7547	6.0831 12.1383	11.3201 5.6728	90.0000	100.0335 92.6190	90.0000	0.0000	0	1696. 1703.	
	NIX is the number of unindexed lines.										

11 / 30 III. Our Structure Solutions (1): INDEXING with N-TREOR-09

11 / 30 III. Our Structure Solutions (1) : INDEXING with N-TREOR-09

12 / 30 III. Our Structure Solutions (2): Flexible molecular model

for Tetracaine (Novell , NJC, 2002)

13 / 30 III. Our Structure Solutions (3): Flexible molecular model

for Leocaine

2 more

experimental

models

Tetracaine (TCHC) XRPD (Novell,2002)

Tetracaine (TCHC) SXD (2010)

_diffrn_radiation_monochro	omator graphite
_diffrn_radiation_source	'fine-focus
sealed tube'	
_diffrn_radiation_type	MoK∖a
_diffrn_radiation_waveleng	th 0.71073
_diffrn_reflns_av_R_equiva	lents 0.0513
_diffrn_reflns_av_sigmal/ne	etl 0.0884
_diffrn_reflns_limit_h_max	9
_diffrn_refIns_limit_h_min	-9
_diffrn_reflns_limit_k_max	11
_diffrn_refIns_limit_k_min	-9
_diffrn_refIns_limit_l_max	17
_diffrn_refIns_limit_l_min	-17
_diffrn_reflns_number	5899
_diffrn_refIns_theta_full	27.44
_diffrn_refIns_theta_max	27.44
_diffrn_refIns_theta_min	3.39

13 / 30 III. Our Structure Solutions (3): Flexible molecular model

for Leocaine

2 more

experimental

models

Tetracaine (TCHC) XRPD (Novell,2002)

Tetracaine (TCHC) SXD (2010)

_diffrn_radiation_monochro	mator graphite
_diffrn_radiation_source	'fine-focus
sealed tube'	
_diffrn_radiation_type	MoK∖a
_diffrn_radiation_wavelengt	h 0.71073
_diffrn_refIns_av_R_equival	ents 0.0513
_diffrn_refIns_av_sigmal/net	tl 0.0884
_diffrn_refIns_limit_h_max	9
_diffrn_refIns_limit_h_min	-9
_diffrn_refIns_limit_k_max	11
_diffrn_refIns_limit_k_min	-9
_diffrn_refIns_limit_l_max	17
_diffrn_refIns_limit_l_min	-17
_diffrn_refIns_number	5899
_diffrn_refIns_theta_full	27.44
_diffrn_refIns_theta_max	27.44
	3.39

14 / 30 III. Our Structure Solutions (4) : Theoretical Crystal Model

PMC: Packing of Molecules in Crystals

(Dzyabchenko, 2008) Russ. J. Phys. Chem.

E minimizes the energy of the lattice

requires :
the unit cell
a rigid molecular model

15 / 30 III. Our Structure Solutions (5): SOLVING THE STRUCTURE !

OUR STRATEGY :

(i) Fine-tune the solving procedure on a known case :

(Tetracaine Hydrochloride)

(ii) Transpose it to cases of similar complexity :

The two new polymorphs (Leocaine)

16 / 30 III. Our Structure Solutions (6): SOLVING THE STRUCTURE !

EXPO-2009?

(i) DIRECT METHODS [Phase problem] FAIL

WHY : Not enough triplets / quartets in the Lebail- extracted F(hkl)'s

(ii) SIMULATED ANNEALING FAILS (for now ...)

WHY : Preferred Orientation not yet included in the Monte-Carlo search

17 / 30 III. Our Structure Solutions (7): SOLVING THE STRUCTURE !

FOX !

(Favre-Nicolin , Cerny) J. Appl. Cryst. 2002

WHAT : DIRECT SPACE METHODS

HOW : Monte-Carlo Parallel Tempering + Relaxed Flexible Molecular Model

WHY : Preferred Orientation IS included in the Monte-Carlo search

WORKS WITH TETRACAINE Ł WE TRY IT ON LEOCAINE

18 / 30

III. Our Structure Solutions (8) : A TYPICAL FOX SCREEN

19 / 30 III. Our Structure Solutions (9): FOX solutions for LEO

Polymorph # 1

Polymorph # 2

... after GSAS refinement 20 / 30 III. Our Structure Solutions (10) : FOX solutions for LEO

Polymorph # 1

Polymorph # 2

21 / 30 III. Our Structure Solutions (11) : FOX solutions for LEO

Polymorph # 1 : GSAS-fit diffraction data

III. Our Structure Solutions (12) : **FOX solutions for LEO**

22 / 30

Polymorph # 2 : GSAS-fit diffraction data

23 / 30 III. Our Structure Solutions (13) : FOX solutions for LEO

Polymorph # 1versusPolymorph # 2

III. Our Structure Solutions (14) : **Do they make sense ?**

Polymorph # 1

PMC / THEORY

24 / 30

25 / 30

III. Our Structure Solutions (15) : Do they make sense ?

TETRACAINE

Mogul Results	/iewer											
Show / hide : Columns • Fragments Deselect all fragments												
Help Double click to view result in Mogul												
Fragment	Classification *	No. of hits	Query value	Mean	Std. dev.	z-score	x - mean	Minimum	Maximum	Median	d(min)	Local de
C19 N11 C18	Not unusual (enough hits)	793	105.593	110.526	2.520	1.958	4.932	83.958	132.651	110.609	0.000	
C13 N12 C1	Not unusual (enough hits)	52	123.544	123.352	2.410	0.080	0.192	116.725	126.836	123.738	0.006	
C14 C13 N12	Not unusual (enough hits)	140	108.445	111.333	2.828	1.021	2.888	102.176	127.860	111.120	0.004	
C15 C14 C13	Not unusual (enough hits)	375	111.361	114.206	6.035	0.472	2.845	99.956	157.142	113.236	0.002	
C16 C15 C14	Not unusual (enough hits)	10000	110.364	113.643	8.886	0.369	3.279	28.671	180.000	113.132	0.001	
08 C7 C4	Unusual (enough hits)	1592	117.284	112.266	1.707	2.940	5.017	96.366	128.246	112.168	0.001	
C9 C10 N11	Unusual (enough hits)	33	107.973	113.243	2.482	2.123	5.270	107.969	119.756	113.426	0.004	
L												-
C2 C1 N12 C13	Not unusual (enough hits)	371	-2.818								0.001	0.353
C6 C1 N12 C13	Not unusual (enough hits)	371	176.112								0.000	0.388
O8 C7 C4 C3	Not unusual (enough hits)	10000	179.083								0.002	0.377
017 C7 C4 C3	Not unusual (enough hits)	10000	6.007								0.002	0.434
08 C7 C4 C5	Not unusual (enough hits)	10000	-1.982								0.001	0.388
017 C7 C4 C5	Not unusual (enough hits)	10000	-175.058								0.002	0.418
C9 08 C7 C4	Not unusual (enough hits)	2181	176.771								0.000	0.969
C9 08 C7 017	Not unusual (enough hits)	2405	-10.361								0.005	0.887
C7 08 C9 C10	Not unusual (enough hits)	191	-171.505								0.000	0.492
O8 C9 C10 N11	Not unusual (enough hits)	590	-73.342								0.001	0.205
C14 C13 N12 C1	Not unusual (enough hits)	112	175.351								0.001	0.518
C15 C14 C13 N12	Not unusual (enough hits)	1309	178.668								0.003	0.517
C13 C14 C15 C16	Not unusual (enough hits)	10000	-177.304								0.001	0.668
C9 C10 N11 C18	Unusual (enough hits)	92	94.607								0.001	0.033
C9 C10 N11 C19	Unusual (enough hits)	92	-149.398								0.003	0.043

MOGUL [CCDC]

LEO Polymorph # 1

	Results V	iewer												
Show /	Show / hide : Columns Fragments Deselect all fragments Deselect all fragments													
Help Double click to view result in Mogul														
Туре	Molecule	Fragment	Classification	No. of hits	Query value	Mean	Std. dev.	z-score	x - mean	Minimum	Maximum	Median	d(min)	Local de
		O1 C7 C4	Unusual (enough hits)	1592	119.430	112.266	1.707	4.197	7.164	96.366	128.246	112.168	0.034	
		C8 01 C7	Unusual (enough hits)	626	123.960	116.351	2.206	3.449	7.608	97.347	127.366	116.375	0.202	
		C8 C9 N1	Unusual (enough hits)	33	108.056	113.243	2.482	2.090	5.187	107.969	119.756	113.426	0.087	
🖃 torsio	n													
Ē.	0001_1													
		C8 O1 C7 C4	Not unusual (enough hits)	2181	179.760								0.001	0.939
		C8 01 C7 02	Not unusual (enough hits)	2405	0.761								0.001	0.938
		O1 C8 C9 N1	Not unusual (enough hits)	590	58.275								0.041	0.615
		C8 C9 N1 C14	Not unusual (enough hits)	92	-165.363								0.153	0.348
		C8 C9 N1 C15	Not unusual (enough hits)	92	77.700								0.310	0.120
		C2 C1 N2 C10	Not unusual (enough hits)	371	20.482								0.847	0.156
		C6 C1 N2 C10	Not unusual (enough hits)	371	-159.503								0.158	0.154
		C11 C10 N2 C1	Not unusual (enough hits)	112	-150.084								1.061	0.098
		01 C7 C4 C3	Unusual (enough hits)	10000	144.315								0.058	0.006
		O2 C7 C4 C3	Unusual (enough hits)	10000	-36.649								0.147	0.011
		O1 C7 C4 C5	Unusual (enough hits)	10000	-36.344								0.026	0.007
		O2 C7 C4 C5	Unusual (enough hits)	10000	142.692								0.036	0.011
		C7 O1 C8 C9	Unusual (enough hits)	191	137.257								0.725	0.026
		C12 C11 C10 N2	Unusual (enough hits)	1309	-140.048								5.325	0.002
		C10 C11 C12 C13	Unusual (enough hits)	10000	-120.937								0.056	0.010

26 / 30 III. Our Structure Solutions (16) : Are they stable ?

LEOCAINE polymorph # 1

Hyperchem / PM3

27 / 30 III. Our Structure Solutions (17) : Are they stable ?

LEOCAINE polymorph # 2

Hyperchem / PM3

III. Our Structure Solutions (18): Intramolecular H-bonds?

(c)

Acta Crystallographica Section B Structural Science ISSN 0108-7681

(2000) Clair Bilton,^a Frank H. Allen,^b Gregory P. Shields^b and Judith A. K. Howard^{as} Intramolecular hydrogen bonds: common motifs, probabilities of formation and implications for supramolecular organization

Figure 2 Intramolecular motifs found in \geq 25 structures.

Leocaine : poly # 1

28 / 30

 Freeze-drying TCHC generates a new unknow polymorph: Leocaine #1

 Leocaine #1 exposure to intense X-ray beams [synchrotron , 27 keV] produces a second new polymorph: Leocaine #2

 Structure solution with : Index [N-TREOR-09 / EXPO-2009]; Solve [FOX]; Refine [GSAS]

- FOX requires a flexible molecular model:
 (i) Molecular Modeling (ii) XRPD [TCHC , 2002] (iii) SXD [TCHC]
- Why FOX works better than EXPO-2009 on Leocaine Preferred Orientation is included in the Monte-Carlo search
- Next : observe Leocaine #1 Ł Leocaine #2 transition in situ

THANK YOU :

 Prof. Carmelo GIACOVAZZO : IC-CNR, U. Bari, Italy N-TREOR-09 EXPO-2009 IL MILIONE

• Free Web resources

: GSAS [R. Von Dreele] FOX [V. Favre-Nicolin] MERCURY [CCDC]

30 / 30

Last but not least :

ICDD staff : Newton Square, PA, USA my participation ...