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* A brief introduction of structural biology
* Coherent X-ray: X-ray free electron laser
* Solving structures by XFEL

v'Nano-crystals
v Single particle
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An example for the importance of
structures of proteins—Prion

Same sequences
/' same stechiometries
Difference in structures

] Prion caused mad-
Normal prion cow-disease



2003 Nobel prize for chemistry: 1

Potassium ion channel

Why K* ion can pass through the membrane while the smaller
Na* ions can’t?



1) Hydrated ions;
2) The channels mimic the environments of hydrated K* ions, but not Na* ions;
3) Therefore Cs* ions, with the similar sizes and hydration, can also pass.
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The way from genes to structures

Genes | Cloning | Expression | Soluble | Purified | Structures

15272 | 14866 6408 1474 843 80
2008.6.16 http://secsg.org/cgi-bin/report.pl

Genes
N
from | Gene —> Protein Structure
i . [0 —
data Cloning Preparation Determination Structures
base
Sample Structure

Preparation Determination
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The methods for obtaining protein structures

Methods Structures
X-ray 79916
NMR 9928

EM 545
Hybrid 52
Other 170

Total 90611

http://www.pdb.org/pdb/statistics/holdings.do, 2013/05/14


http://secsg.org/cgi-bin/report.pl
http://www.pdb.org/pdb/statistics/holdings.do,

[ p -

. €8 ¢

-a=- 3

: =92

- o

z®. -
18- 2.0 ppm

H chemical shift (ppm)

1H chemical shift (ppm)




NMR can solve the structures in solution
and suitable for studying the interactions

> Series of 2D, 3D NMR spectra Limitation:
»The positions of the NMR peaks
give the information of
stereochemistry » Resolution: Low molecular weight
»The structures, also the (<39kD)

interaction can be reconstructed

» Sensitivity: High concentration

» Slow: High stability

k | » Difficult to study weak interactions
i i and transient states

.l
¢ »> Difficult to solve the structures of
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Pictures from Prof. Maili Liu, WIPM, CAS



Cryo-EM can solve the structures of huge

» Many projections of identical
particles

»The orientation of individual
particle

»The 3D structures can be
reconstructed

complexes

Limitation:

» Molecular weight (better
>1MD)

» Resolution: typically ~1nm,
near atomic resolution for high
symmetry particles

» Low signal-to-noise ratio

» Huge amount of particles




Expression/purification crystallization X-ray diffraction

F(hk) =|F(hk ) gxhkh
a(hkl)="

Refined structure Model building phasing

High-quality crystals are necessary, sometimes special crystals are needed.
Pictures from Prof. Quan Hao, HK Univ.



X-ray

The experlments of PX

0

0
0 0
' | 0
Crystal ' 0 0
0 0

(F)=> > > F(3) exp(—27if o 3)



The methods for phasmg

* Molecular replacement (MR)
* |[somorphous replacement (IR)
 Anomalous dispersion (AD)

* For de nuovo structure determination:
additional sample preparation or special
experiments are necessary.
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Structures without crystals?

» NMR can only solve the structures of small proteins;
» Cryo-EM can only solve the structures of huge protein

complexes;
» Protein crystallography is the most precise and widely-

used method;
» Obtaining crystals is the bottleneck, especially good-

qguality crystals.

[dCan we obtain structures by small crystals, or even
without crystals?




o QW tititelo) J0syh Enery Physics,Chinese lcademy of Sciences
Coherence of X-ray

* The spatial (transverse) coherent of light:
460" =\
where
o: the size of light source;
o : the divergence of light source;
I: the wavelength.

If the source is small enough (point source),
or the divergence is small enough (parallel
beam), then we obtain coherent light.
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Free Electron Laser
* High energy Linac (¥*1000m long, the energy
of electrons ~10GeV, y~10°)

* Long undulator (~200m)

* The interaction between X-ray and electrons
modulates the beam inside undulator: same
phases, saturation.



LINAC driven
SASE free-electron laser
gun

' accelerating
cavities

undulator

experiment

FEL radiation alaction

dump

From Jochen Schneider, DESY/EXFEL/CXFEL




distance

e-gun: Immrad Linac: Inmrad  Undulator: slicing,
(y=108) ~10pmrad
41:'0°G "=\

47-10pm=1.256A

Pictures from Zhirong Huang, LCLS



Storage ring

3GLS

ERL/Diff. limited
storage ring




The improvement of storage rings

1GLS

emittance ~“100nmrad, coherent wavelength: 1256nm
Coherent length at sample @1A X-ray: L,~500nm.
3GLS (SSRF)

emittance: 4nmrad, coherent wavelength: 50nm
L~5mm

3GLS (NSLS-II)

1nmrad, 12.56nm

L,~20mm

ERL

0.1nmrad, 1.256nm

Diffraction limit ring (PEP-X & SPring-8 upgrading plan)
10pmrad, 1.256A
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Longitude (temporal) coherence

* Longitude coherence is related to energy

resolution:
L=A2/AN
* 1A X-ray, AMA=10"%, L.=10%A; AA/A=107,
L.=107A.

* Usually the longitude coherent length is
enough for structure determination.
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The key point: emittance

 Low emittance source = coherent X-ray
source

* The only available source now: X-FEL
 Maybe diffraction limit storage ring or ERL?

* Good coherence: smaller focus spot, better
signals from smaller crystals, even detectable
signals from non-crystals.



A case of small crystal:
Dr-rrA-TD7(1-215)

SeMet-DrRRA-TD7@SSRF-BL17U, ~15um




Protein structure determination for crystals smaller
than 1um

The structures of 10um-
size crystals can be easily
solved (ESRF, J. Mol.
Biol., 367, 310-318. 2007 )
New SR facilities: 5mm

It is not difficult to obtain

1pum-size crystals, but not
easy to grow big crystals.

The low emittance (<1nmrad) SR source would provide the

beam smaller than 1um. However, the radiation damage

becomes the main problem. Pictures from ESRF upgrading CDR



Physics,Chinese __c_'ﬁ“d'emy ‘of Sciences

What structure biologists want?

e Structures without crystals

* Crystallization is always a problem, especially
high-quality crystals

* Nano-crystallography

* |If your crystals are not good enough, usually due
to the qualities of your proteins...

* But it will be very helpful if the structures can be
solved via small crystals.

* Coherent X-ray may help.



Does it work?

* Can we obtain the diffraction/scattering
signals from nano-crystals/single particle?

* How to solve the phases?

* In the case of non-crystal, how to reconstruct
the 3D structure?
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The pulse shorter than 2fs: reliable structures;
5fs: some errors;

>10fs: Distorted structures
R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406 (2000)



Diffraction before destruction

One pulse, one measurement

&

Particle injection &%

XFEL pulse

ey _i:';":f--‘,' p ; i
L7 g,a“éﬂ Noisy diffraction pattern
NI

If the XFEL pulses are short enough, reliable structural
information can be recorded before the samples are destroyed.

From Henry Chapman



Demonstrated with soft X-rays at FLASH

SEM of structure etched into silicon
nitride membrane

2nd shot at full power

Reconstructed Image — achieved
diffraction limited resolution!
Wavelength = 32 nm

1st shot at full power

Chapman et al, Nature Physics 2 839 et ks Ao
(2006)




Rear pnCCD
(z = 564 mm)

Interaction Front pnCCD
point (z = 68 mm)

Chapman et al. Nature 470 73-77 (2011)
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Liquid Jet

¢ {‘/
Interactio:}Point\
(10 um? focus) §
Be lenses

CSPAD detector Undulator
(z=93 mm) (420 m upstream)
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Boutet et al. Science 2012



propeptide
C carbohydrate

occluding
loop

enzyme
carbohydrate

substrate
binding cleft

By combining two recent innovations, in vivo crystallization and serial
femtosecond crystallography, we obtain the room-temperature 2.1 A resolution
structure of the fully glycosylated precursor complex of ThCatB.

Redecke et al. Science 2012



These experiments shows

* “Diffraction before destruction” works to atomic
resolution, the diffraction patterns can be obtained.

* The structures can be solved by molecular
replacement, but too many patterns used (20,000-
40,000 patterns).

* However, the phases of diffractions can not be
solved via anomalous signals, due to the
uncertainty of central symmetry related
orientations.

 What structure biologists want: Solving de nuovo
structures.



Geometric factor G(k) & structure factor F(k)
I A 2log|F (k)|
............................................................................................. 2log|G(K)|
k

The variation of F(k) is much more placid than G(k), therefore
G(k) can be calibrated to obtain the F(k) of a single cell.



Calibrating of G factors Calibrating of G factors No calibration

calculated at 5.0 A calculated at 2.5 A
resolution resolution
Only 2300 patterns used.

Qu et al. submitted.



The resolution ranges used to calculate G factors

y

Gat2.5A
R/Rsplit: 0.3440/0.1871
C: 98.35%

Gat5.0A
R/Rsplit: 0.1119/0.1225
C: 97.87%



The anomalous signals used in PX for de nuovo
structure determination

To solve the structures of protein crystals, the electron
densities can be calculated by:

(Xj7yj’zj) ZF(hm’ m’I )eXp[27zi(thm+yjkm+Z| )+§0(hm’ m? )]

Since p must be real, therefore, in the case of no anomalous
scattering, F(h,k,l)=F(-h,-k,-1), o(h,k,1)=¢(-h,-k,-1)+7

With anomalous scattering, F(h,k,l)#F(-h,-k,-1). The difference
can be used for solving the phases.

The diffraction spots (h, k, I) and (-h, -k, -1) can not be
distinguished by crystallography only.
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Traditional PX experiments

/ 0
X'ray ————

Crystal w
x

= Only 1 crystal is used, one can define the “implicit” coordinate
system of crystal cell.
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Solution: Common-line method
SECTION:

3 images

A SINGLE ARC
GIVES A ~3D FIX

High resolution: the curvature of the Edwald sphere.
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“implicit” coordinate system of crystal cell

Rfactor

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

B>

1

From the structure factors of a single cell obtained from different
nano-crystals, by comparing the differences on common lines, the
“+” and “-” coordinate systems can be distinguished.

Zhou et al. Chinese Phys. C.
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No. collected diffraction images
No. of hits/indexed images

1,471,615
66,442/12,247

1997712
40,115/10,575

Chapman, H. N. et al. Nature 470, 73-77 (2011).

Boutet, S. et al. Science, 337, 362 (2012).




* |If the sizes of the crystals are small enough
(e.g. the numbers of cells are small), one can
observe the signals (non-Bargg peaks)
between two Bragg peaks.

* The intensities of non-Bragg peaks provide
additional information for phasing:
oversampling becomes possible.



Zhou et al. in preparation.



* Much easier to obtain nano-crystals.

* Developing methods for:

v Fewer patterns (2000 vs 20000)

v Anomalous dispersion for de nuovo structures
v Oversampling for ab initio phasing
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Final solution: Coherent scattering

Coherent light source Molecules Detector

Crystals: Alignment of molecules

Alignment of photons: Coherent light (laser)
Coherent, high-intensity X-ray also can provide
enough scattering signals from one molecule

p(7) = [ |F(G)|expli ¢(d)]exp[ 27 (F » §)]d°

Pictures from Prof. Jianwei Maio, UCLA



The diffraction of a crystal: The periodic
arrangement of molecules limits the directions of
diffracted spots. Although the time of a photon
arriving (phase) is random, the intensities of
diffractions are strong enough to be detected.



Incoherent photon scattering by a molecule: No
periodicity, scattering in any directions. Without
coherence, N photons produce N times of signals,
still too weak to be detected.



Unless the photons are coherent, N photons
provide N2 times of intensities.
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Single molecule scattering

 Should be the final solution for structure
determination

* Non-crystalline samples provide the possibility of
oversampling




Crystal: data obtained
only in some positions
satisfied the Laue’s law.

Non-crystalline sample: data can be
acquired in any positions
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(c) An image reconstructed from (b).

Miao et al., Nature 400, 342 (1999).

(b) An oversampled diffraction pattern
(ina Iogarithmic scale) from (a).
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(d) The convergence of the reconstruction.



Single mimivirus particles

Aerosol sample injector

&

108 mbar &=

LCLS X-ray pulses Detector assembly
“Diffraction before Destruction”
also works in the case of single
particle.

The experiment need to be
improved, especially the “lost
region” due to the beamstop.

f Unconstrained Sphere leosahedron

g Unconstrained Sphere

lcosahedron




»From a series of 2D projections, the 3D structure of a
particle can be reconstructed.

» The orientation of individual projection need to be known
before.

» The technique is similar to the “Three-Dimensional
Reconstruction” of cryo-EM.

Picture from Jianwei Miao, UCLA
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Classification method

Diffraction pattern

"':j;':':':':':".':':':':':':':".':':' Diffraction pattern

ool represented by vector:
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(three-dimensional) g (p-dimensional)
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Simulation for the classification method

Determined angles ()

0 1 2
Correct angles (1)

The orientation recovery The structure recovery

» The number of the particles are huge: 72,000
»The r.m.s.d of the orientation is still large: 3.8 degree

>Higher resolution, more particles: e.g. 1.8A, 106 diffraction

patterns.
Russell Fung et al. Nature Physics, 5, 64, 2009
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Common-line method

High resolution: the curvature of the Edwald sphere.




The projections of common lines on detector

(120, 0, 0) (0, 0, 0) (0, 60, 0)

(30, 30, 30) (120, 80, 120)




Single-common-line method

* Select one pattern as reference, calculating the
difference between two patterns at the common
line.

e The intensities can be scaled via the intensities at
common lines.

HFhkl (06,,3,7/, n)‘ _‘Fhm (O,O,O,l)

2 | Fie (0,0,0.0) |

Rfactor (a, 8,7,n) = =
1

hk






The number of data points used in single-
common-line method

-135 -85  -35 15 65 115 165
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Multi-common-line

* Use all of the other patterns as references,
refining the orientation

e |teration

H Fu(a, By, n)‘ — <‘ F m
N )

multi — Rfactor (e, £,7,n) = W Zl
hkl







Determining the orientations

v'A method similar to the molecular replacement method in PX

v'Only ~10* particles are needed

v'The r.m.s.d. of orientations are 0.34°, 0.14° and 0.19° respectively

v'103 photons per pulse, near atomic resolution for 5MDa virus (diameter
345A)

Nr. of grids
(actual/recovered) (actual/recovered) (actual/recovered) used

18.6 / 18.8 21.2 [/ 21.2 67.6 / 67.8 1668
3rd 18.4 / 18.4 -34.8 / -34.8 -32.2 [/ -32.4 1110
4th -20.8 / -20.8 -28.2 [/ -28.2 122.8 / 122.8 1238
5th -31.7 / 314 -27.7 | -27.6 97.1 / 97.0 1056
6th 88 / 9.2 124 [ 124 -98.3 / -98.6 2456
7th -116.6 / -117.2 -34.4 [/ -34.2 144.4 / 144.6 662
8th -117.5 / -117.6 -46.2 [/ -46.2 -14.3 / -14.2 669



Actual structure Recovery structure
2tbv, 5MDa

Zhou et al. in preparation.



Still long way to go ...

* The duration of the pulse need to be shorter: at
least 10fs, better 2fs.

* Not enough coherent photons: now 10'2phs/pulse
(2mJ@8.3keV) can be archived at LCLS. But
103phs/pulse (20mJ@8.3keV) is required for
molecule of 5MDa.

e Strong enough for destruction but not for signals!



mailto:2mJ@8.3keV)
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Simulation for single particle scattering

10
Virus particle, 5MDa,
34.5nm
, A=5.0 A, 5X 10?3 photons
10

per pulse focused to 100
nm

10 counts at 14.7 A
resolution

log(photons/pixel)
o

0.05 0.06 0.07 0.08 0.09
k



Summary

v Coherent X-ray source: low emittance accelerator-based
source
v" X-FEL, or diffraction limit storage ring/ERL

v Can we obtain the scattering signal?
v Yes, “Diffraction before Destruction” for nano-crystals or single particles.

v' How to solve the phase?
v MR, AD, oversampling are all possible

v' How to reconstruct the 3D structures?
» Similar to cryo-EM, need orientations before.
» Classification/Common-line

» Accurate structure factors!

» Coherent X-ray open a new area for structure biology: small
crystals, structure without crystal
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