

Process-Induced Phase Changes and Potential Impacts on Drug Product Performance

Deliang Zhou, AbbVie Inc.

May 24, 2013

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

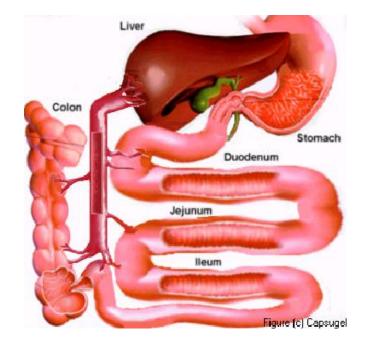
Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>


ICDD Website - www.icdd.com

Outline

- Pharmaceutical Solid Forms
- Pharmaceutical Processing & Potential Phase Transformations
- Case Studies
- Anticipation and Mitigation

Basic Regulatory Requirements

- Safety & Efficacy
 - Pharmacological properties
 - Drug concentration (bioavailability)
 - \circ Impurity and level (stability)
- Bioavailability (BA)
 - Physiology of absorption site(s)
 - Biopharmaceutical properties
 - \circ Physicochemical properties
 - Solubility, dissolution rate, stability
- Stability
 - $\,\circ\,$ Physically and chemically

Solid phases may differ

- Packing: Molecular volume and density; Refractive index; Conductivity, electrical and thermal; Hygroscopicity
- Thermodynamic: Melting and sublimation temperatures; Internal energy; Enthalpy; Heat capacity; Entropy; Free energy and chemical potential; Thermodynamic activity; Vapor pressure; Solubility
- Spectroscopic: Electronic transitions (UV); Vibrational transitions (IR/Raman); Rotational transitions (Far IR/Microwave); Nuclear spin transitions (NMR)
- Kinetic: **Dissolution rate**; Solid state reaction rate; **Stability**
- Surface: Surface free energy; Interfacial tensions; Habit
- Mechanical: Flow, Tensile strength; Compactibility; Handling

Directly related to CQAs: stability, bioavailability, efficacy and safety

Solid Form Selection

Thermodynamically stable phase is usually preferred

Meta-stable phases selected for special considerations

- Apparent solubility/ dissolution rate \rightarrow Bioavailability
- Chemical stability
- Mechanical property (e.g. acetaminophen)
- API Manufacturability

Importance of thorough screening /characterization

- Polymorph: Crystal lattice
- Salt/parent: Lattice + counterion
- Anhydrate/hydrate: Water activity/RH

Importance of Controlling Solid Forms during Processing

Inadvertent solid phase changes may impact:

- physical and/or chemical stability
- dissolution characteristics
- in vivo performance (bioavailability, efficacy, and safety)

May defeat the purpose of form selection.

May introduce a time bomb.

• Kinetics in solid-state may vary significantly

Process-induced phase transformations may be responsible for many observed drug product performance issues

Common Pharmaceutical Processing

Active Pharmaceutical Ingredient (API) size reduction

- Impact mill
- Fluid energy mill

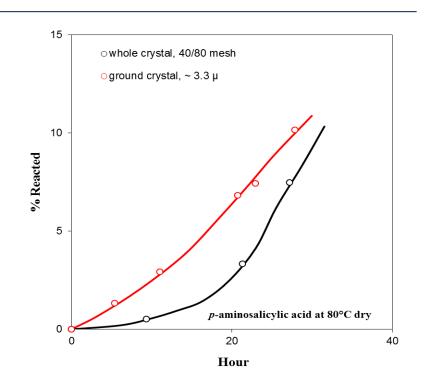
Granulation/size enlargement

- Wet granulation (low/high shear mixing, fluid-bed mixing, pelletization)
- Dry granulation (slugging, roller compaction, etc.)
- Melt granulation

Spray (and freeze) drying

Compression and encapsulation

Coating (functional or non-functional)


API Size Reduction

Often necessary first step

- Facilitates subsequent processing
- Enhances performance

Mechanical and thermal stresses

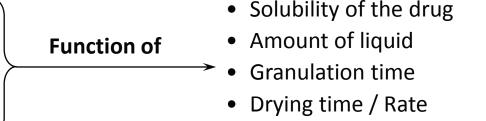
- Shearing/cutting
- Compacting
- Impacting
- Attrition

Kornblum and Sciarrone (1964)

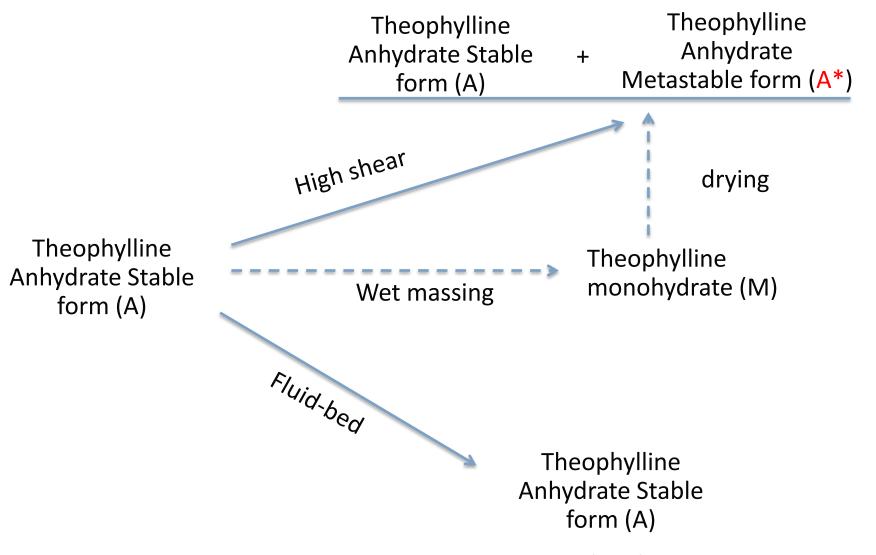
- Dehydration
- Partial melting / crystallization
- Metastable phases
- Defect , disorder, amorphous

Wet Granulation and Drying

Improves

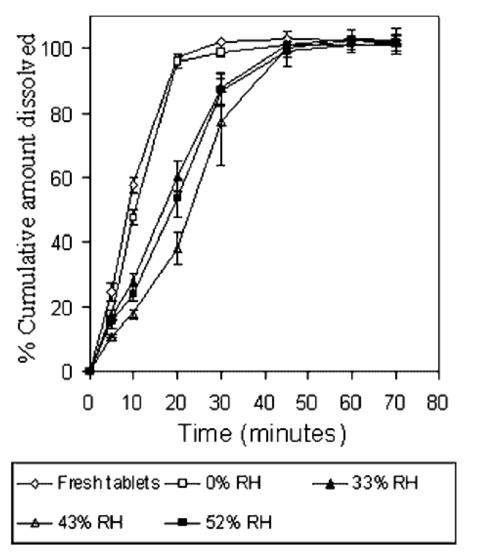

- Densification and flowability
- Cohesiveness
- Compressibility

Solvent, thermal, mechanical stresses


- Dissolution/Crystallization
- Drying/crystallization/amorphization

Potential phase changes

- Conversion to stable phases
- Conversion to metastable phases
- Hydration/dehydration
- Defect/disorder /amorphous



Wet Granulation Example

Tantry, Tank, Suryanarayanan, J. Pharm. Sci. 96, 1434-1444 (2007)

Theophylline Example (Cont)

Dissolution after 2 week storage

Tantry, Tank, Suryanarayanan, J. Pharm. Sci. 96, 1434-1444 (2007)

Dry Granulation (Slugging & Roller Compaction)

Method of choice for granulation when

- Moisture sensitive API
- Continuous manufacturing

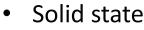
Mechanical stresses

- Compacting
- Shearing
- Attrition

- Polymorph conversion
- Defect/disorder /amorphous

Example: Drug S (25 µg)

- Wet Granulation: Chemical stability as primary challenge
 - Roller Compaction: Even worse stability
 - Destruction of the crystalline API during RC


Melt Granulation / Melt Extrusion

Method of choice

- Solvent-free method particularly when dry granulation is not suitable
- Intentionally generate a metastable phase, e.g. amorphous

Mechanical and thermal stresses

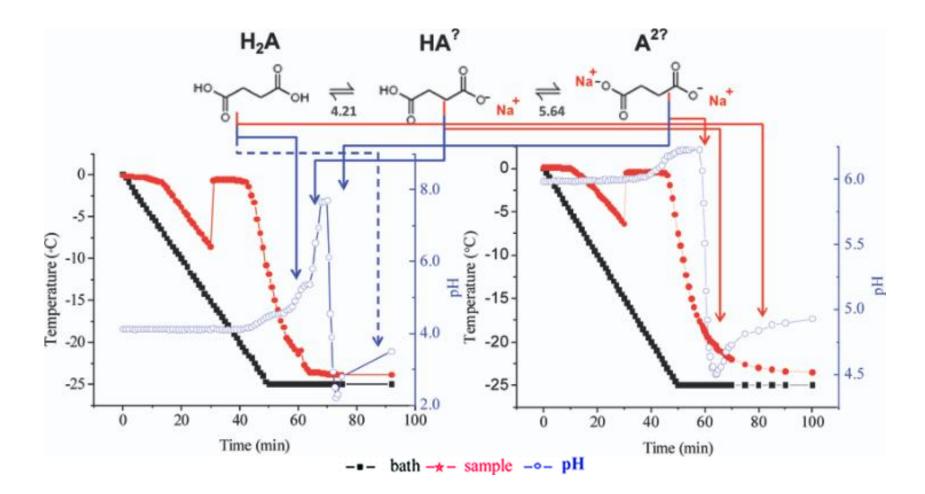
- Shearing
- Temperature
- Amount of granulating agent
- Granulation time
- Congealing time

- Melt
- Solution
- Solution-mediated

Spray (Freeze-) Drying

Useful

- Homogeneous
- Porous
- Uniform particles
- Produce metastable phase


Solvent and thermal stresses

- Convert to stable phases
- Conversion to meta-stable phases
- Hydration/dehydration
- amorphization

Be aware of phase transformation of excipient during freeze-drying

Example: Excipient Crystallization during Freeze-Drying

Sundaramurthi, Shalaev, Suryanarayanan, J. Phys. Chem. B 114: 4915-4923 (2010)

Compression/Encapsulation

Compression

- Compression pressure
- May cause phase transformation
 - \circ Caffeine
 - \circ Sulfabenzamide
 - Maprotiline hydrochloride
- Creation of defect / disorder is common

Encapsulation

- Low stress introduced
- Phase transformation seldom encountered

Coating

Nonfunctional

- Aqueous or solvent based
- Minimal interaction between core and coating liquid
- Minimal risk of transformation

Active coating

- Solution or suspension of the drug may be used
- Solution or solution-mediated transformation possible
- Pay attention to amorphous content created

The defect / disorder / amorphous contents created is a common theme and cause to drug product performance issues

Analytical Tools and Challenges

Powder X-ray Diffraction (PXRD)

• Gold standard

Microscope

• Optical, electronic, atomic force

Thermal Analysis

• DSC, TGA

Spectroscopy:

• IR, Raman, NMR

Challenges:

Low level of phase transformation is very difficult to be detected and/or quantified in real formulations

abbvie

Case Study: ABT-232

- Highly water soluble HCl salt
- Solid forms
 - \circ Anhydrate
 - Tm: ~ 189 °C
 - Non-hygroscopic
 - Chemically stable (solution)
 - Solid-state stable 40°C/75%
 - Compatible with excipients
 - Selected for development
 - Monohydrate
 - Crystallized from aqueous solutions
 - Dehydrates @ 80 90 °C, and converts to anhydrate



Wardrop J et al, J. Pharm. Sci. 95, 2380-2392 (2006)

ABT-232: Physicochemical Properties of Amorphous Form

Amorphous

- Tg: 62 °C
- Very hygroscopic
- Crystallizes readily

Wardrop J et al, J. Pharm. Sci. 95, 2380–2392 (2006)

ABT-232: Formulation

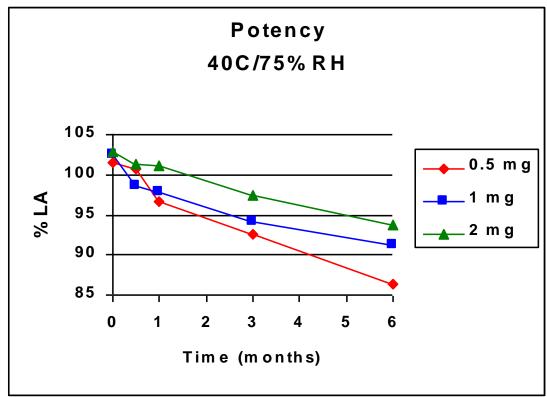
- Immediate release tablet formulation
- low drug loading

 \odot Low dose: 0.5, 1, 2 mg

 \odot 0.25 to 1% (w/w) drug loading

 $\ensuremath{\circ}$ Challenge: content uniformity

• Formulation excipients


 Pre-gelatinized starch, mannitol, Avicel 101, sodium starch glycolate, magnesium stearate

- Wet granulation process
 - Excellent content uniformity achieved
 - \odot Hydrate expected to crystallize and dehydrate to the anhydrate
 - Amorphous phase expected to crystallize to anhydrate (if formed)

ABT-232 : Formulation Stability @ 40 °C / 75% RH

Issue

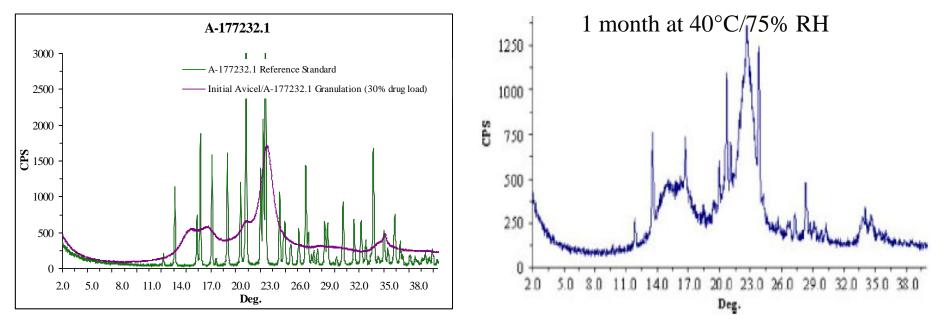
- Unacceptable chemical stability
- Although API is chemically stable and is compatible with the selected excipients

Wardrop J et al, J. Pharm. Sci. 95, 2380–2392 (2006)

Hypotheses:

Wet granulation /drying unintentionally generated amorphous phase

- Anhydrate → dissolution → amorphous (drying)
 Excipients inhibited the crystallization from amorphous phase
- Anhydrate \rightarrow dissolution \rightarrow monohydrate \rightarrow amorphous (drying)


Amorphous content led to accelerated degradation

- Chemical stability not demonstrated for amorphous phase during physicochemical characterization
- Difficulty in performing solid state stability experiments for pure amorphous API due to rapid crystallization

ABT-232: Investigation

Demonstrate the formation of amorphous phase

- Extremely low drug loading: 0.25 1%
- Use model formulation with increased drug loading of 30%

- Amorphous phase generated at 30% loading \rightarrow more likely at lower loading
- Crystallization from amorphous phase in formulation is sluggish
 - No crystallinity seen after 5 months in a capped bottle (RT)

Avoid the formation of amorphous will improve chemical stability

- Use processes that eliminate the use of water
- Direct compression
 - Crystallinity demonstrated by PLM and Raman
- Accelerated stability testing: 1 mg strength

40 °C / 75% RH	Wet Granulation		Direct Compression	
Time (Weeks)	Potency (%)	Related substances (% w/w)	Potency (%)	Related substances (% w/w)
0	102.4	0.3	100.5	0.3
4	97.4	1.02	100.2	0.4

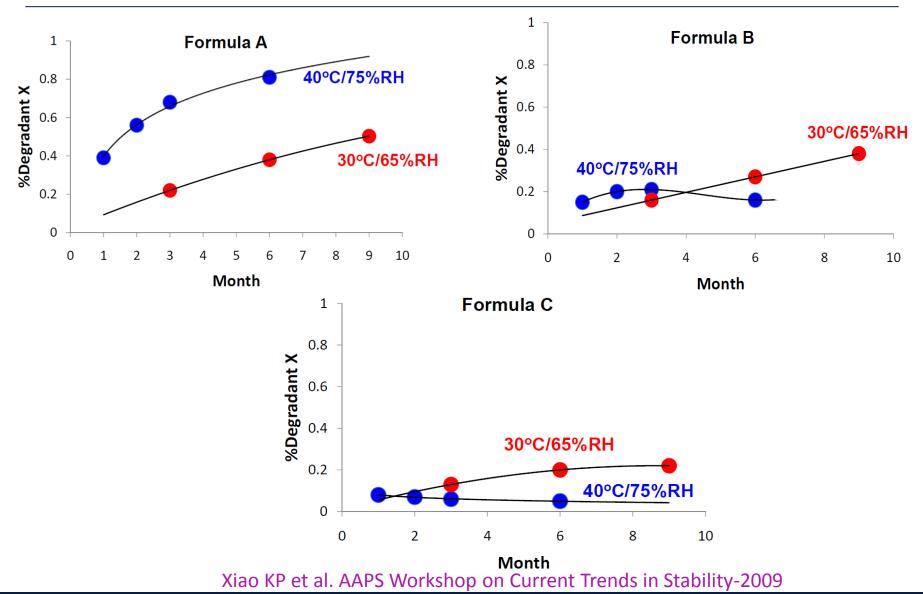
Much improved chemical stability

ABT-232 : Summary

Phase transition occurred during wet granulation and drying

- Amorphous phase was unintentionally generated, and was sustained in the product on stability testing
- Instability originates from the amorphous phase

Formulation excipients altered the course of phase transitions


• Inhibited nucleation

Direct compression produced stable product

- Avoid wet granulation due to high solubility of API
- Eliminated the formation of amorphous phase

What if amorphous phase is not very physically stable in formulation?

Drug X – A Conference Example

abbvie

PPXRD 2013: Process-Induced Phase Changes and Potential Impacts

Annealing: Improving Physical / Chemical Stability

What is annealing ?

 Holding of drug product intermediate for certain duration under appropriate conditions (e.g. temperature, humidity) prior to further processing

Why annealing?

- Promote phase transformations
- Mitigate risks associated with incomplete phase transformation during processing and phase transformations during subsequent storage.

Where it is usually done?

- Conditioning for dry powder inhalation (DPI) product
- Elsewhere when appropriate

Annealing Example: Gabenpentin

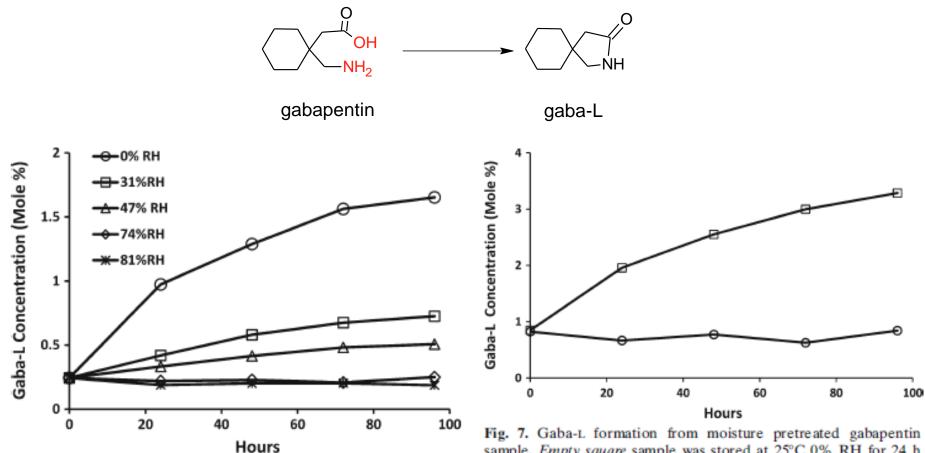


Fig. 4. Gaba-L formation from 60 min milled gabapentin sample at 50°C and different relative humidity

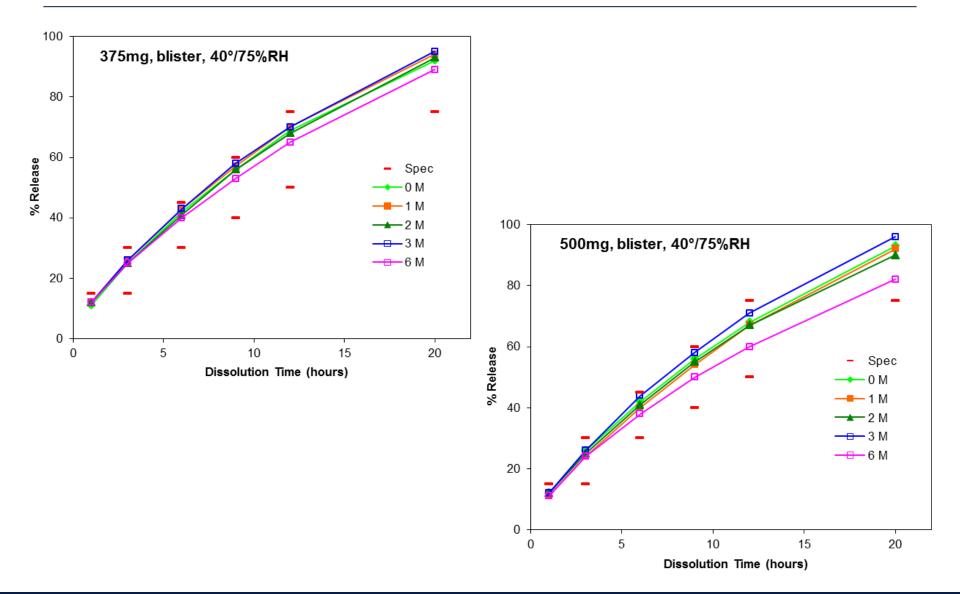
Fig. 7. Gaba-L formation from moisture pretreated gabapentin sample. *Empty square* sample was stored at 25°C 0% RH for 24 h before thermal stress, *empty circle* sample was stored at 25°C 81% RH for 24 h before thermal stress

Zong et al, AAPS PharmSciTech 12, 924–931 (2011)

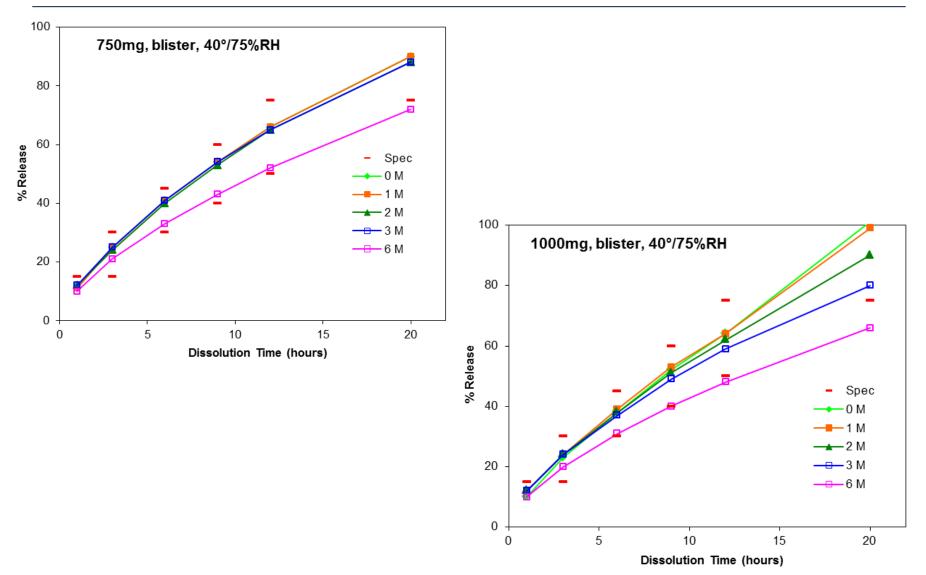
Small molecule

moderate water solubility

• ~18 mg/mL


Extended release tablet

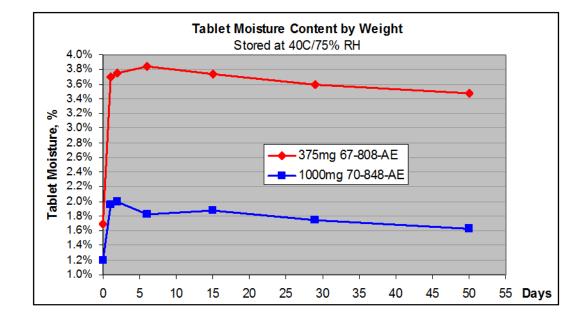
- Hydrophilic matrix (HPMC)
- Strengths: 375, 500, 750, 1000 mg


Manufactured by wet granulation

- Common granules
- Differ in amount of extra-granular HPMC to achieve release objectives

Drug Y: Release during Stability

Drug Y: Release during Stability (Cont)


Drug Y: Release during Stability (Cont)

Possible causes

- Crystal form: polymorph/hydrate not reported before
- Partial amorphous API during WG
- Interactions between API and HPMC/PVP during WG/storage

No clear cause identified

- PXRD
- Raman
- NIR
- Moisture sorption

Anticipating and Mitigating Phase Transformation: — API Selection

Understand design objectives

 \circ Target product profile

- Understand drug molecule
 - Intrinsic physicochemical properties: solubility, stability
- Understand solid-state properties of the API
 - Polymorph, salt, hydrate, amorphous etc
 - Solid-state properties including reactivity
 - $\ensuremath{\circ}$ Interrelationship of conversion
- Select appropriate form to accomplish TPP
 - o Identify challenges: bioavailability, stability, manufacturability
 - \odot Address challenges with appropriate solid form selection
 - Understand potential impact to design objectives if there is a solidform change

Anticipating and Mitigating Phase Transformation: — Process, Formulation, Packaging

Understand what may happen during various processes

- General process understanding
- Considerations for specific drug molecule
- Anticipate what may be the consequences

Select a process that can achieve the design objective while

- Minimize unwanted phase transformation
- Minimize impacts on product performance
 o Facilitate transformation if needed

Always stay vigilant about the potential of phase changes

Formulation manipulation

Packaging

Acknowledgement

Jacqui Wardrop

Geoff Zhang

Yihong Qiu

Devalina Law

