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Motivation

o Knowledge of absolute phase amounts and amorphous content is
critical for the usefulness of an increasing number of materials

e Cement
e Minerals & Mining (disordered clays)
e Polymers, geopolymers

e Pharmaceuticals

e Mathematical basis of quantitative phase analysis (QPA) is well
established. Methods for QPA

e are mature, extensively covered in literature, and enabled in many
software packages

e are basically the same for QPA of crystalline and amorphous content
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Motivation

e Amorphous content can be difficult to quantify

e Intensity contribution to diffraction patterns is not always evident,
especially at low concentrations

e Broad diffraction halos resulting in an increased peak overlap problem

e Discrimination of peak tail / amorphous band / background intensities
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Can we easily discriminate between peak and background intensity?
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Motivation

e Amorphous content can be difficult to quantify

e Intensity contribution to diffraction patterns is not always evident,
especially at low concentrations

e Broad diffraction halos resulting in an increased peak overlap problem

e Discrimination of peak tail / amorphous band / background intensities

e In many cases, the presence of amorphous or poorly crystalline
phases is undetected or simply ignored

e Information about amorphous phase amounts is frequently not sought-
after

e Preferred / indiscriminate use of the Rietveld method
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Pecharsky & Zavalij (2009):

"Crystalline materials are frequently characterized as solids with
fixed volume, fixed shape, and long-range order bringing about
structural anisotropy, producing sharp diffraction peaks"”

"Amorphous (or non-crystalline) materials are thus solids with fixed
volume, fixed shape, characterized by short-range order, which,
however, may also have loose long-range order”

= This definition embraces disordered materials possessing only one- or
two-dimensional, or lesser, degrees of order

Klug & Alexander (1974):

"The term, amorphous solid, must be reserved for substances that
show no crystalline nature whatsoever by any of the means

available for detecting it"
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e There is no sharp dividing line between crystalline and amorphous
materials

e "short" and "long" range order are arbitrary terms

e The ability to detect and characterize ordering is dependent upon
the principles of the analytical method and models being used

e Conventional X-ray diffraction loses its power for crystalline material
structures on the nano-scale, diffraction patterns become broad and
features are less defined

e Resulting ambiguities are paraphrased in literature by the term
"X-ray amorphous" to highlight the limitations of X-ray diffraction
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Classification of methods described in this study
e Single peak method

e Whole pattern methods
e Traditional Rietveld method
e Internal Standard method
e External Standard method
e PONKCS method
e Linear Calibration Model (LCM)
e Degree of Crystallinity (DOC)
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Classification of methods described in this study

eIndirect measurement
1. Analyse crystalline components
2. Put on absolute scale
3. Calculate amorphous content by difference
eDirect measurement - estimate amorphous contribution to pattern
e (Calibrate using known standards, or
e Include in whole sample analysis via modeling

= Relies on the ability to observe the intensity contribution of amorphous
phases to the diffraction pattern
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Practical Assessment of Merits of Methods

Single Peak Method
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General procedure

1. Prepare a series of standards containing the amorphous phase at
known concentrations

2. Obtain a measure of the amorphous component’s intensity which is
related to its concentration

3. Generate a calibration curve, e.g.
W,=A*1_+B

where W, is the fraction of the amorphous phases and I, is the measure of the intensity
of the amorphous phase
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Benefits Limitations

Direct method

e There is no need to characterize all

phases in the mixture e Need access to region of pattern

e Potential to minimize errors related free from excessive peak overlap

to microabsorption : .
e Requires access to materials for

e More than one amorphous phase preparation of standards
can be analyzed (this will usually

require profile fitting) Method only applicable to mixtures

similar to calibration suite
* No need to determine the e Needs redetermination to

background. _ _ compensate for tube ageing and any
Note: If so, the calibration curve instrument configuration changes

wont go through the origin

9. November 2010 30
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Practical Assessment of Merits of Methods

Traditional Rietveld method
Internal Standard method
External Standard method

PONKCS method
Linear Calibration Model
Degree of Crystallinity
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 Relies on finding a crystal structure which adequately models the
positions and relative intensities of the observable bands of an
amorphous component in a diffraction pattern

e e.g. Le Bail, 1995; Lutterotti et al., 1998

e Allowance for extreme peak broadening provides peak widths and
shapes which represent those of the amorphous bands in the
observed data

e Since this approach treats all components as crystalline and includes
them in the analysis, the amorphous phase abundance can be
obtained using the traditional Rietveld methodology
(Hill and Howard, 1987):
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Benefits Limitations

e Requires no standards or calibration e Direct method

e More than one amorphous phase e Cannot correct for microabsorption
can be analyzed errors

e Some amorphous material will not
have a representative crystal
structure

e Available crystal structures (with
long-range order) may not
accurately represent material which
only has short-range order (e.qg.
glasses).
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Practical Assessment of Merits of Methods

Traditional Rietveld method
Internal Standard method
External Standard method

PONKCS method
Linear Calibration Model
Degree of Crystallinity
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e The sample is "spiked" with a known mass of standard material and
the QPA normalized accordingly

e The weight fractions of the crystalline phases present in each
sample are estimated using the Rietveld methodology

e (Concentrations to be corrected proportionately according to:

STD known
STD

Corr(W,)) =W,

measured

where Corr(W,) is the corrected weight percent, STD,,,,,,, the weighed concentration of
the standard in the sample and STD,,......¢ the analyzed concentration

e The amount of amorphous material W,,,,n0us Can then be derived
from:

n
Wamorphous =1- Z Corr (\Nj )
j=1
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Benefits Limitations

e Indirect method e Only the sum of all amorphous and
« The Internal Standard Method is unidentified phases can be reported

enabled in many Rietveld analysis Cannot correct for microabsorption
packages errors

e The sample is contaminated

e The standard addition process is
laborious (weighing, mixing), and
not feasible in industrial, automated
sample preparation environments

e The method relies upon obtaining a
standard of appropriate absorption
contrast to prevent the introduction
of a microabsorption problem
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Practical Assessment of Merits of Methods

Traditional Rietveld method
Internal Standard method
External Standard method

PONKCS method
Linear Calibration Model
Degree of Crystallinity
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e An external standard is used to determine a "normalisation
constant" K for the experimental setup

e Independent of sample and phase related parameters

e A single measurement is sufficient for analysis

e Requires the mass absorption coefficient for the entire sample - y,,*

W S.@MV),
a(abs) — K
e Amorphous content derived in same way as internal standard

method

Puts the determined crystalline components on an absolute scale and
derives the amorphous content by difference

O’Connor and Raven (1988), Powder Diffraction, 3(1), 2-6
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e u." can be calculated e.g. from the elemental composition of the
sample, determined, for example, by X-ray fluorescence (XRF)

e K requires regular redetermination to compensate for tube ageing
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Jansen et al., 2011
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Benefits Limitations

e Indirect method e Requires the mass absorption

o Uses an external standard, the coefficient for the entire sample

sample is not contaminated e Only the sum of all amorphous and
unidentified phases can be reported

e Cannot correct for microabsorption
errors

e The normalization constant K is
dependent on the instrumental
conditions

e Needs redetermination to
compensate for tube ageing and any
instrument configuration changes



<)
BRUKER
(>

Practical Assessment of Merits of Methods

Traditional Rietveld method
Internal Standard method
External Standard method

PONKCS method
Linear Calibration Model
Degree of Crystallinity
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e Phases with Partial Or No Known Crystal Structure are characterized
by measured rather than calculated structure factors

e Follows the same general form as that used in the Rietveld Method
but now includes all crystalline and amorphous phases characterized
by either calculated or empirical structure factors

e For all phases a using empirically derived structure factors ZMV
"calibration constants” must be derived, e.g. via an internal
standard s

W S
ZMV) = —% 3 (ZMV
(ZMV),, WS (ZMV)

S (04

e A one time calibration per phase with a single standard mixture is
usually sufficient
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PONKCS Method BE%R
Benefits Limitations

e The amorphous phase is included in e Direct method

the analysis model e Requires availability of a standard

e More than one amorphous phase mixture to derive an empirical ZMV
can be analyzed

e Can deal with preferred orientation
and microstructure broadening

e Potential to partially minimize
errors related to microabsorption,
when ZMVs have been calibrated
for all phases

e Consider to use the PONKCS
methodology also for all crystalline
phases with known crystal structures
are known

e Depends on calibration procedure
and concentration range



<)
BRUKER
(>

Practical Assessment of Merits of Methods

Traditional Rietveld method
Internal Standard method
External Standard method

PONKCS method
Linear Calibration Model
Degree of Crystallinity
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e Initially similar to previous methods, however, the information
pertaining to the crystalline phases is discarded

e The intensity contribution of an amorphous phase to the powder
pattern is modeled via single line or Pawley or Le Bail fitting
methods, but only the refined scale factor is used in subsequent
analysis

e A simple linear calibration model is derived from a suite of standard
mixtures, which relates the refined scale factor, S, to the
amorphous phase concentration, W, ;.

Wamorph = A-S—B

where A and B are the slope and any residual offset of the calibration, respectively
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Benefits Limitations

e More than one amorphous phase e Direct method

can be analyzed : .
e Requires access to materials for

preparation of standards

e Method only applicable to mixtures
similar to calibration suite

e Needs redetermination to
compensate for tube ageing and any
instrument configuration changes
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Practical Assessment of Merits of Methods

Traditional Rietveld method
Internal Standard method
External Standard method

PONKCS method
Linear Calibration Model
Degree of Crystallinity
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e Based on the estimation of the total intensity or area contributed to
the overall diffraction pattern by each component in the analysis

e The degree of crystallinity, DOC, is calculated from the total areas
under the defined crystalline and amorphous components from

DOC — Crystalline Area
Crystalline Area+ Amorphous Area

e The weight fraction of the amorphous material, W,,,.,,, can be
calculated from

W

a
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Benefits Limitations

e More than one amorphous phase e Direct method

can be analyzed o If the chemistry of the crystalline

e The method is enabled in many phase is different from the whole
software packages sample then an additional
calibration step is required to obtain
absolute phase amounts



Summary
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Quantifying Amorphous Phases
Comparison of Methods
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Method Calculation of Requires Can correct for  Can deal with

amorphous  calibration suite or microabsorption  more than one
content standard errors amorphous phase

Single Peak Direct Calibration suite Yes Yes

Rietveld Method Direct No No Yes

Internal Standard Indirect Internal standard No No

External Standard Indirect External standard No No

PONKCS Direct Single mixture Partly Yes

LCM Direct Calibration suite Yes Yes

DOC Direct Case dependent No Yes
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For the determination of amorphous material, the problem will
dictate the method(s) used

o All methods discussed are principally capable of determining (of
what has been defined as) amorphous material in mixtures with the

same accuracy (and precision) as for crystalline phases, in ideal
cases even down to 1% absolute or better

e Limitations are the same as for QPA of crystalline phases and are
dictated by sample properties and the analytical techniques used
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e Single samples do not afford the luxury of making a calibration suite

e Intensity contributions of amorphous phases to the diffraction
pattern are not always evident, especially at low concentrations

e Indirect methods (Internal or External Standard Method) will usually
perform better.

e Where intensity contributions of amorphous phases are evident, any
method based on modeling amorphous bands provides improved
accuracy

e Usually a sample of pure amorphous material, or a sample where the
amorphous content is high, is required to establish an accurate model.

e Calibration based methods usually have the potential to achieve the
highest accuracy, as many aberrations, most notably
microabsorption, are included in the calibration function
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