BEST PRACTICES IN FORMULATION ANALYSES BY X-RAY DIFFRACTION

T. G. Fawcett, S. N. Kabekkodu, S. D. Gates, A. M. Gindhart, J. R. Blanton and C.E. Crowder International Centre for Diffraction Data, Newtown Square, PA, USA

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

About the Authors

- Suri Kabekkodu editor in chief, pharmaceutical and excipients subfiles
- Stacy Gates senior editor, polymers, noncrystalline materials
- Amy Gindhart senior editor, pharmaceuticals
- Justin Blanton senior programmer, JAVA, data mining, pattern simulations
- Cyrus Crowder principle scientist, embedded software and method developments

Determining Best Practices – Key References

- Fawcett, T. G., McDonnell, H., Higginson, R., (2006, 2009, 2012) "ICDD Global Customer Survey", private communication, International Centre for Diffraction Data. Three separate surveys taken three years apart with over <u>2,000 responses</u> from scientists working in the field of diffraction and material analysis.
- Fawcett, T. G., Needham, F., Faber, J., Crowder, C. E., (**2010**), "International Centre for Diffraction Data round robin on quantitative Rietveld phase analysis of pharmaceuticals", *Powder Diffraction*, 25(1), pp 60-67.
- Fawcett, T. G., Hubbard, C. R., (2004), "Formulation Analyses of Off-the-shelf Pharmaceuticals", American Pharmaceutical Review, Vol. 7, pp 80-83.
- Fawcett T. G., Faber, J., Needham F., Kabekkodu S. N., Hubbard C. R. and Kaduk J. A., (2006), "Developments in formulation analyses by powder diffraction analysis", *Powder Diffraction*, 21, pp 105-110.

About the data

- Y. Ososkov and Z. Cherbanyk Beti, Exova, Mississauga, Canada
- A. Patel, Bristol-Myer Squibb, New Brunswick, NJ, USA
- J. Wright and A. Fitch, European Synchrotron Radiation Facility ESRF, Grenoble, France
- P. Varlashkin GlaxoSmithKline, Durham, NC, USA
- F. Needham, ICDD, Newtown Square, PA, USA
- M. Ermrich, Roentgen Laboratory, Reinheim, Germany
- X. Bokhimi, Universidad Nacional Autonoma De Mexico, Coyoacan District, Mexico
- R. Suryanarayanan, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
- J. Henao, Universidad Industrial de Santander, Columbia
- E. Wachtel, Weizman Institute of Science, Rehovat, Israel
- H. Brusova, Zentiva AS, Prague, Czech Republic
- C. Hubbard, Oak Ridge National Laboratory, TN, USA
- N. Giuliani, Riddle Primary Care Associates (Riddle Hospital), Glen Mills, PA, USA
- J. Kaduk, Illinois Institute of Technology, II, USA

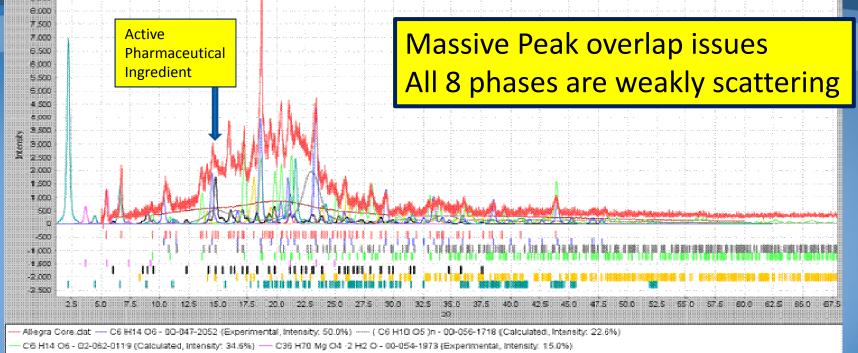
Outline

Specimen Preparation-Round Robin, Experience

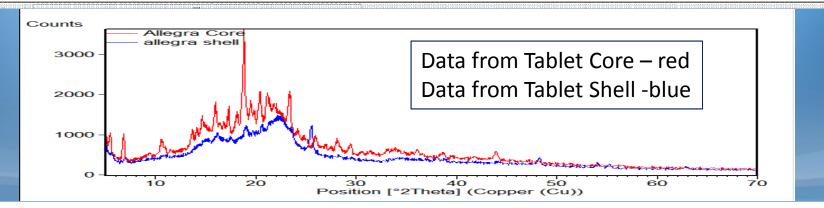
- General issues low scattering power, absorption difference in ingredients, crystallinity
- Asymmetric Crystals
- Particle size
- Granularity
- Orientation
- Separation Techniques

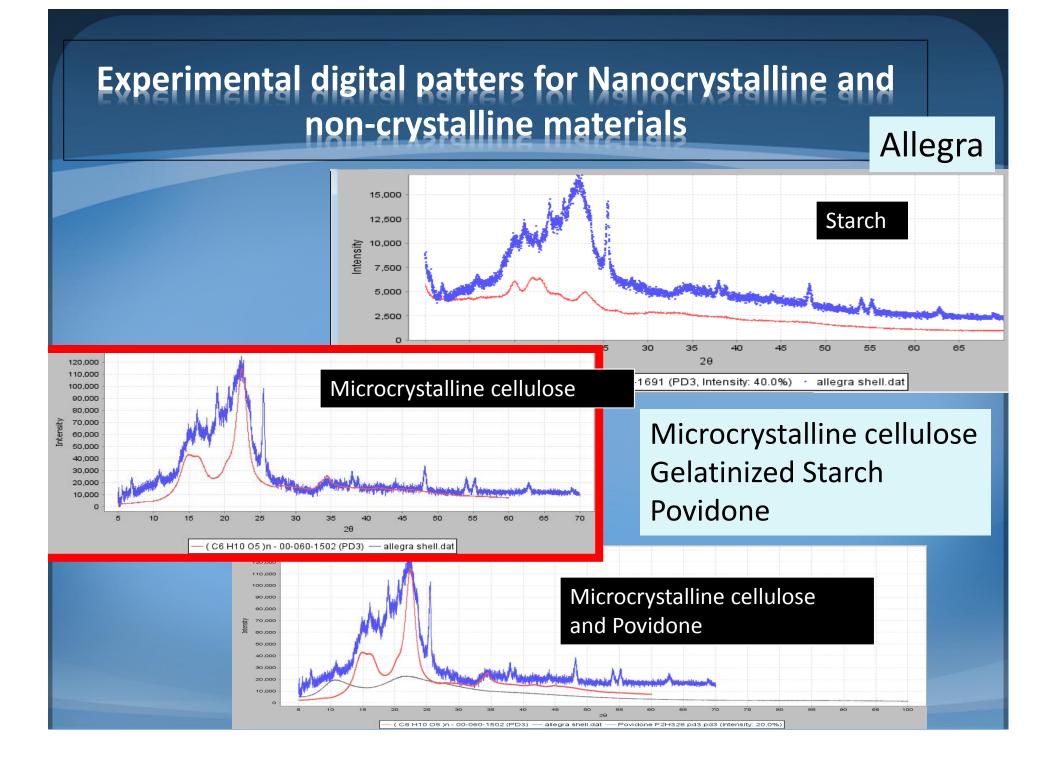
Methods of Analysis – Customers Survey Data

- Experience
- Databases
- Noncrystalline Materials
- Reference Quality
- Elemental Filters
- Subfiles
- Pattern Simulations
- Rietveld Analysis
- Combined Techniques DXC/XRD
- Complimentary Analytical Techniques



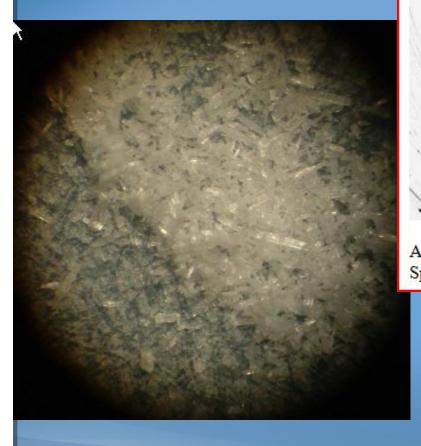
In Formulation analyses the API is often a low scattering low density material that is masked by highly scattering higher density materials often used as excipients

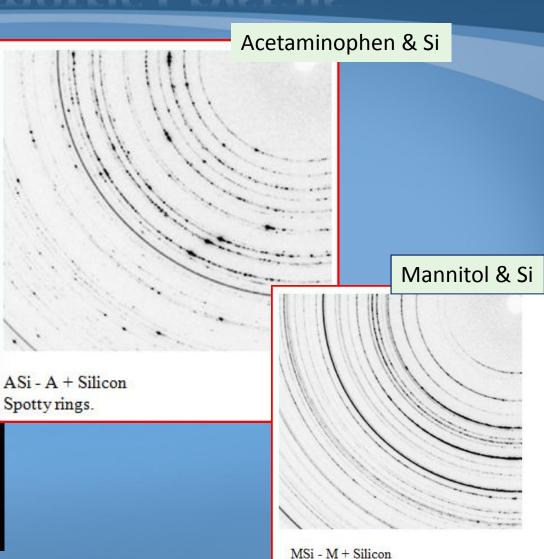

Identify excipients first and then identify the API



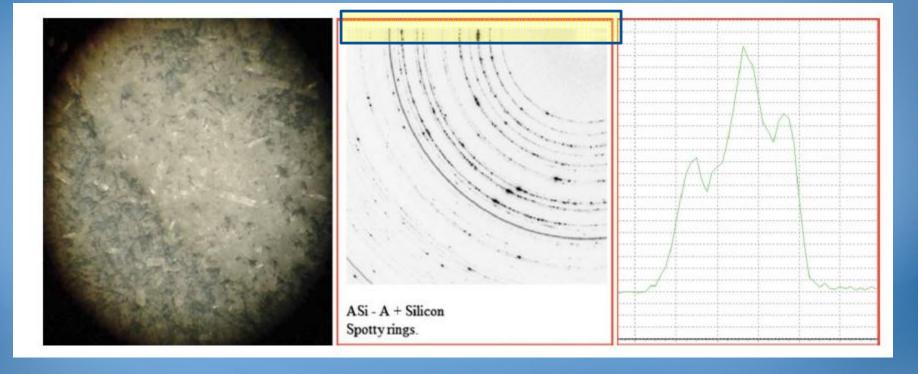
General Issue - Crystallinity

- C32 H39 N O4 · H CI - 00-058-1149 (Experimental, Intensity: 20.0%) - (C6 H10 O5)n - 00-060-1501 (PD3, Intensity: 10.0%) - C6 H8 O7 - 02-061-2110 (Calculated, Intensity: 20.0%)



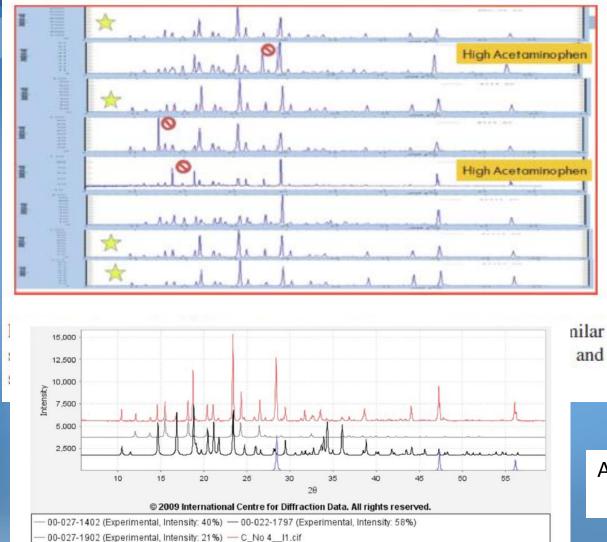

Pharmaceutical Round Robin

Strong texture and some spottiness.


Assymmetric Crystals

ICDD Round Robin Data

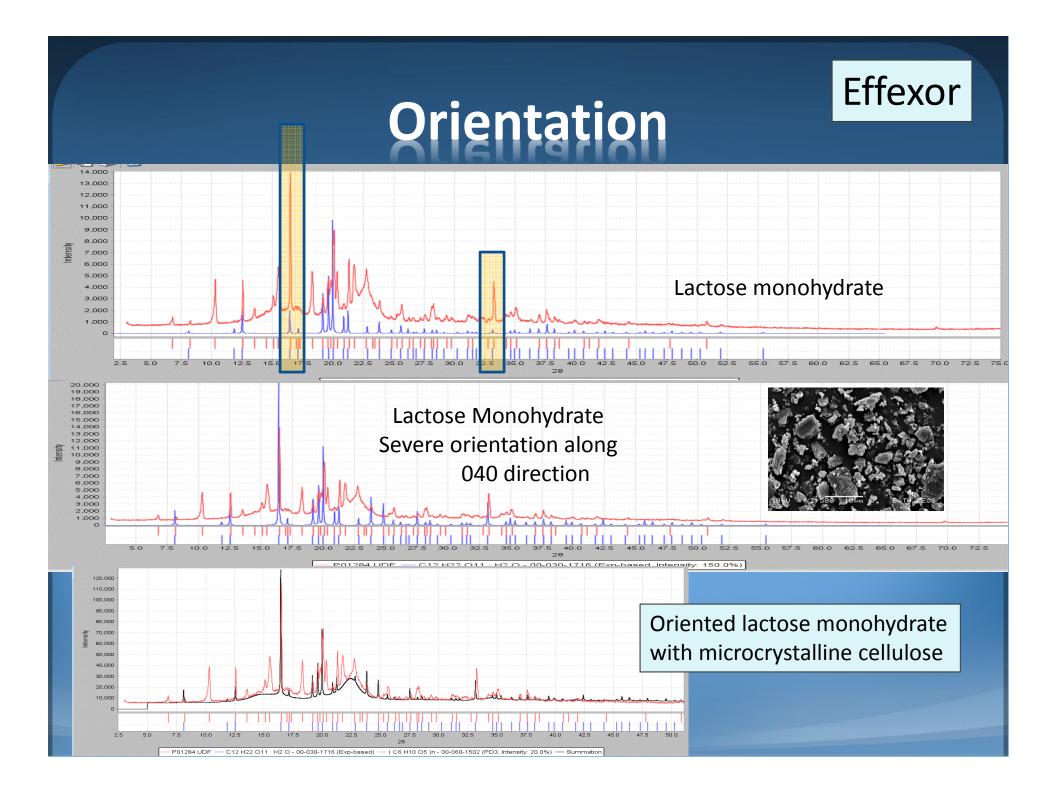
Large grains – capillary mount


2D Detector

1D Detector

Pharmaceutical Round Robin

Pharmaceutical Round Robin


Particle Size/Granularity

Only 4/8 Laboratories produced a randomly oriented powder – only 3/11 produced the correct quantitative results.

Grind the sample to eliminate the particle size effect in the original material

Acetaminophen, D-mannitol and NIST silicon

Pharmaceutical Round Robin Impact on Intensities Severe orientation will 150,000 prevent both 050,000 950,000 identification \$50,000 000,000 750.000 700.000 and quantitation \$50,000 500.000 550.000 500.000 450,000 400,000 350.000 300.000 200.000 100.000 50.000 H B I IN I IIIN III N -50.000 IN NIL I 11 11 000.000 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 20 d-spacings relatively 400.000 375.000 350,000 accurate, intensities and 325.000 300.000 275.000 profiles vary considerably 250,000 225.000 200,000 In poorly prepared samples 175.000 150.000 125,000 100.000 75,000 50.000 25.000 0 -25,000 -50.000

12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.0

Figure 8. (Color online) (a) Superimposed data from seven laboratories for the three component mixture that were all scaled to the maximum peak. (b) Data from seven laboratories are superimposed for the three component mix. The outside two peaks are due to mannitol and the inside two peaks to acetaminophen. The off-scale peak is characteristic of severely oriented acetaminophen.

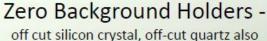
10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25

Best Practices

- Grind or attrite to product random oriented specimens without specimen damage
- Increase collection times and optimize S/N for low Z, low density materials
- Use zero background holders especially if you are analyzing amorphous and non-crystalline components
- Analyze peak shapes to detect granularity (know your instrumental peak shape by running a NIST standard)
- Analyze relative peak intensities to detect orientation
- Run multiple specimens and /or separations (compare or cluster the data)

Tutorial – How to Analyze Drugs (www.icdd.com/resources/tutorials)

On left: Particle sieves of 100, 200 and 600 mesh


On right: Micronizing chambers from a McCrone micronizing mill using either agate media or alumina media (light pink)

How to Analyze Minerals

D0505A5

used

An essential tool for most mineralogists is the use of a zero background holder. This is typically an off-cut single piece of quartz or silicon that will not produce any background in the pattern. This is very useful for small specimens that can be centered in the holder. This is critical if one is analyzing clays or amorphous materials that are weakly scattering. Standard glass and plastic holders contribute amorphous scatter that can interfere with the determination of clay or amorphous phases.

Kaptan capillaries for capillary mounts

For pharmaceuticals polymeric attrition media (Polystyrene, Polyethylene) used for soft materials

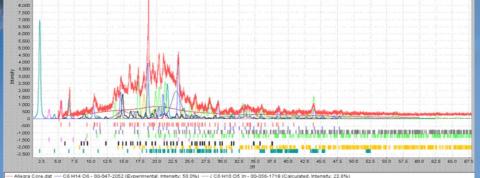
METHODS OF ANALYSIS

ICDD Global User Surveys

	<u>Resp</u>	onses Quei	ries
2012 Survey	1031	9956	10.3%
2009 Survey	811	6950	11.6 %
2006 Survey	220	1305	6 %

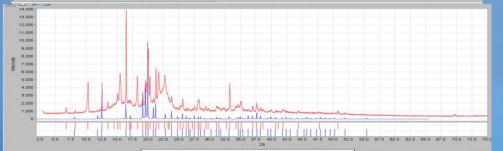
All survey data are in a relational database format for data mining purposes – We can correlate responses to methods used with responses to success in particular analyses

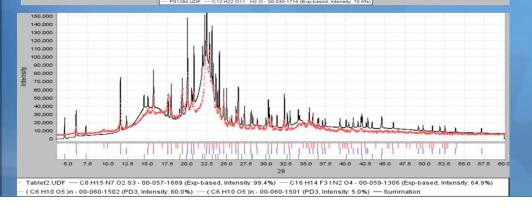
Success in Material Identification


	PDF-4+	Good	Average	Bad	Ugly
	<u>>95 %</u>	<u>>95</u>	<u>>90 %</u>	<u>75-90 %</u>	<u>75% <</u>
Number of Reponses	63	132	351	192	61
Age					
Age >50	42.9	43.2%	41.6%	35.9%	41
21-30	4.8	7.6%	11.7%	10.4%	18
Experience					
Primary XRD Analysis	91.8	87.3%	82.9%	78.7%	73.7%
Frequency Phase ID	88.7	81.0%	79.6%	68.6%	70.0%
Tools					
PDF-2 Usage	20.6	48.8%	61.3%	61.8%	61.8%
PDF-4+ Usage	100.0	48.8%	39.6%	34.9%	38.2%
Technique					
Element Filters	74.0	64.6%	65.9%	51.9%	45.0%
Subfiles	53.3	50.0%	48.6%	27.1%	31.3%
GOM	48.7	40.0%	32.9%	24.8%	35.7%
d- Match	37.8	41.1%	31.4%	23.1%	40.0%
Frequently Don't Use Filters	32.4	38.2%	36.7%	34.0%	40.0%
Frequently do pattern simulations	30.0	32.2%	14.8%	12.3%	10.0%

Database Users

Analyzing Organics is more difficult


	PDF-4+	PDF-4/Organics	PDF-4/Minerals	PDF-2	PDF-2 Best	PDF-4+ Best
Total Responses	314	54	94	468	63	63
Q3						
Academic	41.1	24.1	36.1	45.7	41.9	34.9
Industrial/Man/serv.	29.9	38.9	25.5	29.7	36.5	31.8
Q7						
Primary XRD	83.6	87.5	79.5	80.1	85.2	91.8
Primary ED	31.4	22.2	23.4	28.4	27.8	40.0
Q 10						
Phase ID	59.2	54.0	60.9	61	63.8	58.6
Quant Rietveld	9.9	4.0	6.9	6.8	5.2	13.8
Rietveld Structure	5.1	6.0	3.4	6.4	3.4	0.0
Q 11						
Freq XRD Phase ID	73.0	64.0	65.9	69.4	82.3	86.4
Rietveld Quant	35.0	29.3	30.3	22.4	26.7	40.0
Crystallinity	21.8	20.9	13.6	14.8	22.4	36.7
Crystallite Size	24.4	15.2	15.6	18.9	13.5	36.5
Q 18						
Phase ID						
>95%	21.1	18.4	24.2	14.1	100.0	100.0
>90	45.3	40.8	49.5	46.8		
>75	21.8	32.7	18.7	25.7		
75<	7	6.1	3.3	7.6		
Q 19						
Elements	67.7	60.5	54.8	61.3	67.3	74.0
Subfiles	46.4	43.2	58.6	41	55.8	53.3
GOM	35.2	35.5	38.8	30.7	40.0	48.7
Ref qual	39	48.6	40.4	31.3	40.5	37.8
		a de la composición d			and the second	


Difficult Problems

— Allegra Core dat — C6 H14 O6 - 00-047-2052 (Experimental, Intensity: 50 0%) — (C6 H10 O5)n - 00-056-1718 (Calculated, Intensity: 22.6)
— C6 H14 O6 - 02-052-0119 (Calculated, Intensity: 34.6%) — C36 H70 Mg O4 -2 H2 O - 00-054-1973 (Experimental, Intensity: 15.0%)

- C32 H39 N O4 · H C1 · 00-058-1149 (Experimental, Intensity, 20.0%) - (C6 H10 O5 (n - 00-060-1501 (PD3, Intensity, 10.0%) - C6 H8 O7 - 02-061-2110 (Calculated, Intensity, 20.0%) - C18 H36 O2 - 00-038-1923 (Experimental, Intensity, 60.0%)

Allegra

- Complex Formulation
- Heavy Peak Overlap
- Contains amorphous and nano crystalline materials

Effexor (and Lipitor)

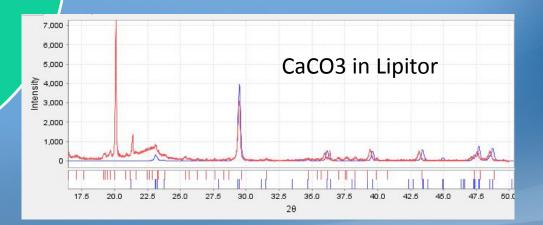
- Major phase (lactose monohydrate) is heavily oriented
- Nanocrystalline material

Pepcid AC

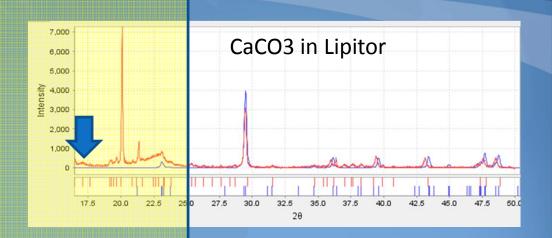
Due to nano and amorphous content this is difficult to analyze with PDF-2, easy to analyze with PDF-4

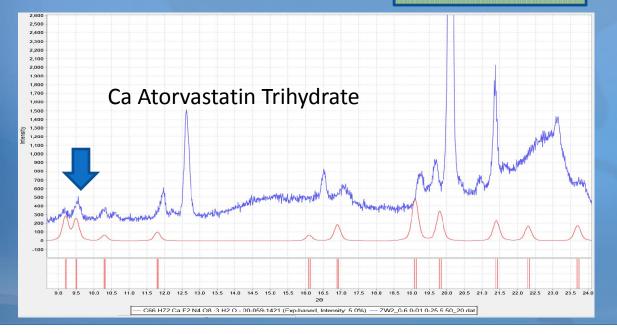
Database Tools for improved formulation analysis

- Subfiles on Excipients and Pharmaceuticals
- Elemental Filters All data expressed in atomic and weight %'s
- Full experimental digital patterns for mircocrystalline polymers and amorphous materials
- Common inorganic salts and oxides
- Evaluate and correct disordered structures
- Actively collect new pharmaceutical materials through grants


Use of Filters

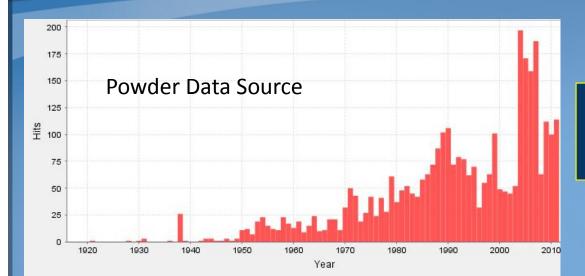
Pharmacuetical and Excipients 6,967 entries

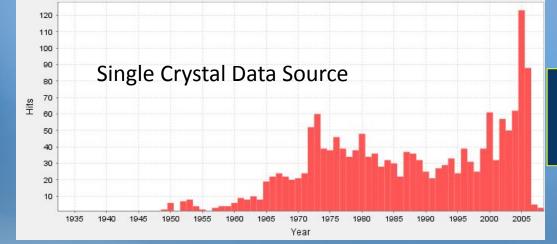

Database


471,257 entries

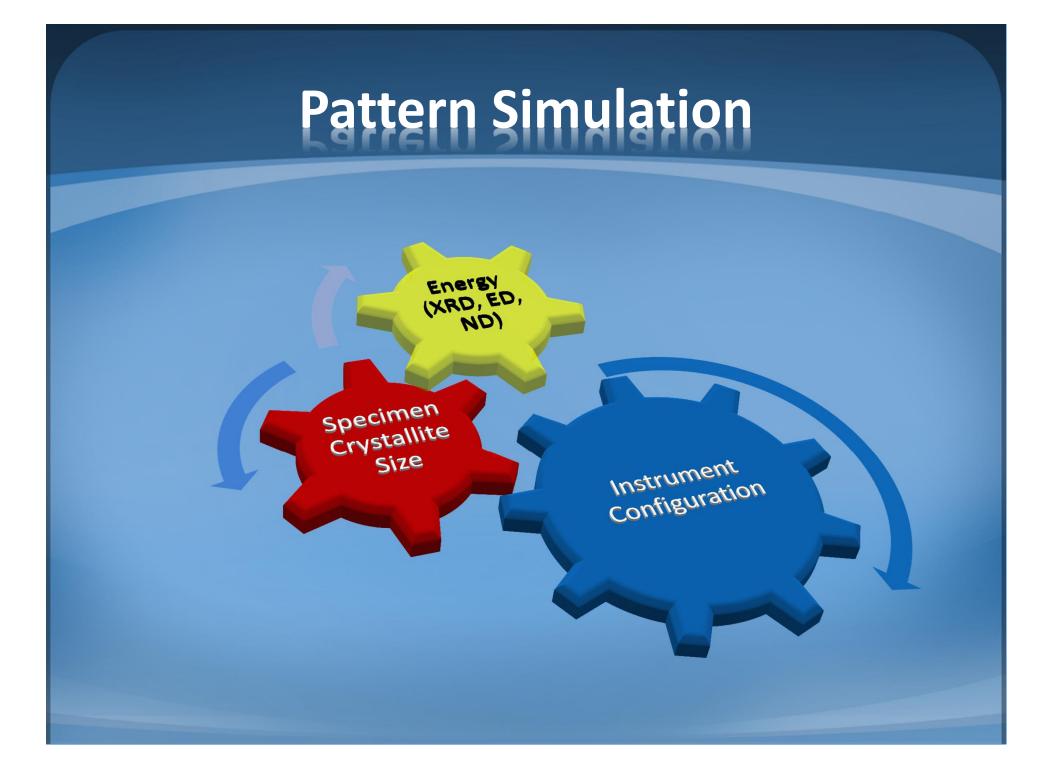
Use of Filters - Lipitor

Subfile and Element Filter

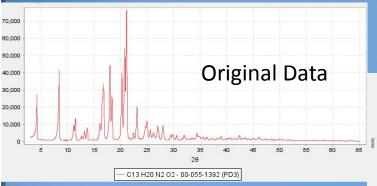



d-spacing filter – 9.66 Å 293 Entries

8 Entries 4 are Ca Atorvastatin


Subfiles - Pharmaceuticals

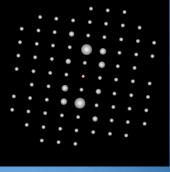
ICDD data sourced from powder diffraction experiments – many grants and donations



ICDD data sourced from CSD single crystal data – primarily literature publications

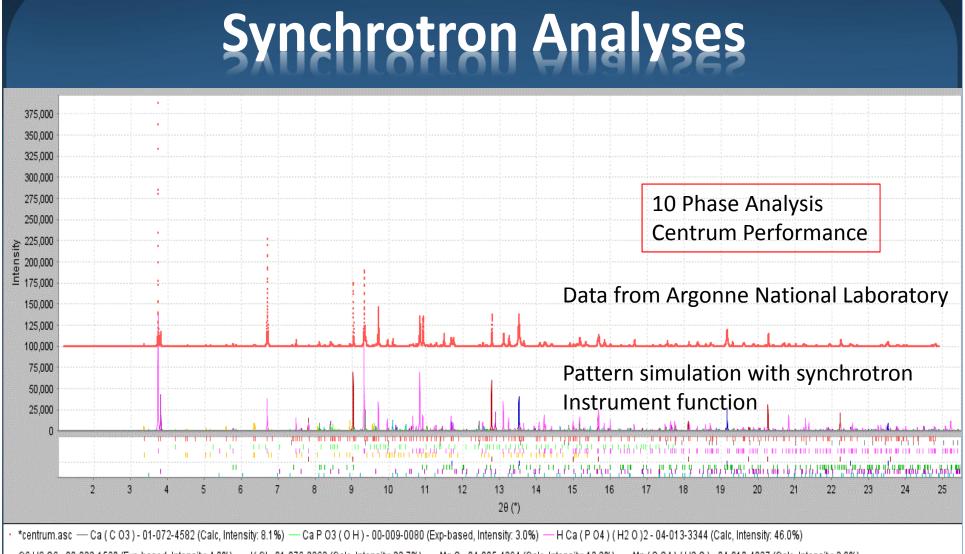
Shao-Fan Lin Dropropizine

53 % of PDF-4/Organics users have a 2D detector



Original Data

EBSD Pattern


Nano

2D XRD

Electron Diffraction Spot Pattern (001)

Electron Diffraction (100 KeV)

C6 H8 O6 - 00-022-1560 (Exp-based, Intensity: 4.0%) — K CI - 01-076-3363 (Calc, Intensity: 22.7%) — Mg O - 04-005-4394 (Calc, Intensity: 13.2%) — Mn (S O4) (H2 O) - 04-010-4027 (Calc, Intensity: 3.0%)

— Fe (C4 H2 O4) - 00-062-1294 (Calc, Intensity: 14.0%) — Ca5 (P O4)3 (O H) - 04-007-2837 (Calc, Intensity: 4.0%)

~ 30% of PDF-4/Organics users use both a laboratory XRD unit and a synchrotron

Centrum Performance- Goodness of Merit (GOM)

High quality lab data

Synchrotron Data

GOM					
Vit C	6159	С	1		
Calcite	6145	I.	2		
Monetite	6143	- I	3		
KCl	5884	- I	4		
Fe Fumarate	5334	В	5		
Brushite	2640	S	8		
Nicotinamide	2517		15		

95 d-spacings in the pattern

GOM maximum = 8000 High scores better fit

	GOIM		
Calcite	7519		1
Monetite	7477	I	2
Brushite	7469	S	3
Vitamin C	7384	С	4
KCI	7166	А	5
MgO	6779		12
MnSO4 Hydrate	5230	Γ	2
Fe Fumarate	4321	R	8
Hydroxyapatite	4892	- I	2
Nicotinamide	3161		8

GOM

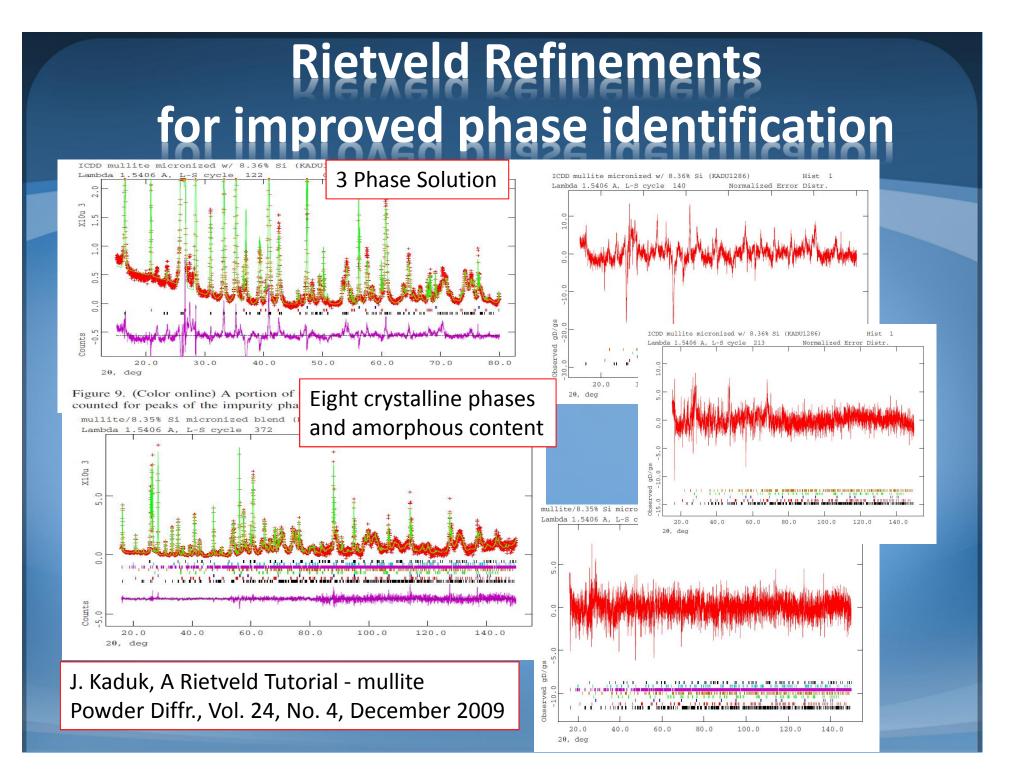
More intensity and resolution 203 d-spacings in the pattern Peaks are well separated

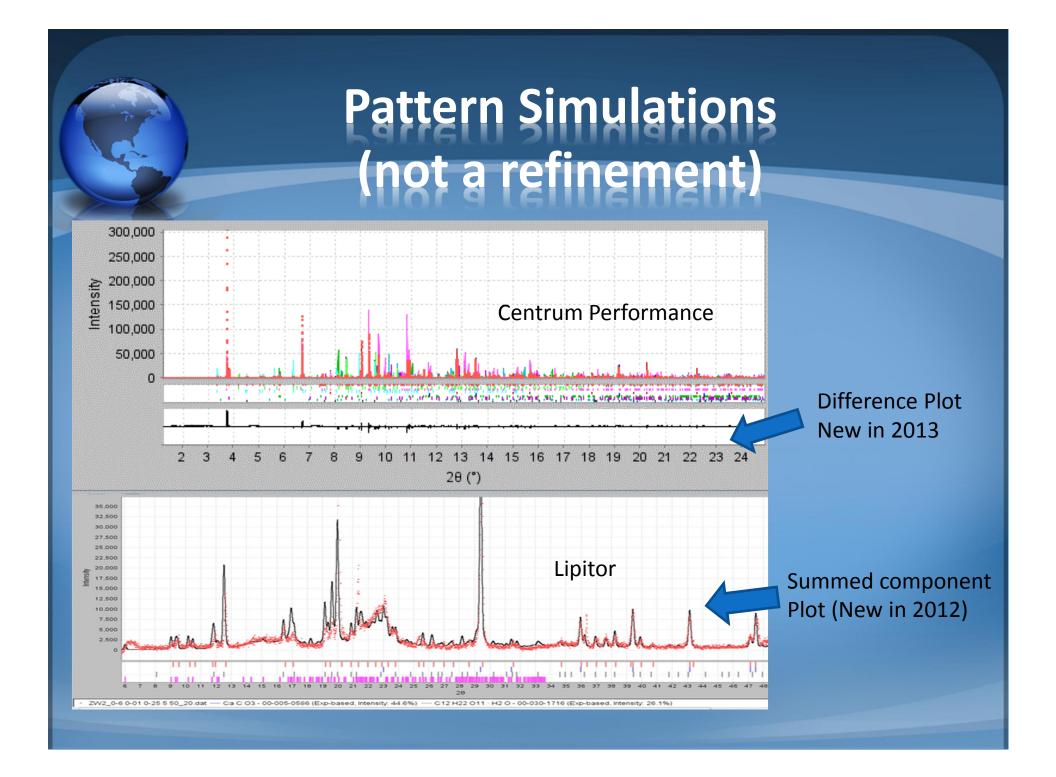
Success in Identification

	Greater t	han 95 %	Less than 75 %
Technique			
Element Filters	74.0	64.6%	45.0%
Subfiles	53.3	50.0%	31.3%
GOM	48.7	40.0%	35.7%
d- Match	37.8	41.1%	40.0%
Frequently Don't Use Filters	32.4	38.2%	40.0%
Frequently do pattern simulations	30.0	32.2%	10.0%
	1 m 1		

Best Methods

Use elemental filters Use subfiles Use GOM Use pattern simulation


Rietveld Refinements for improved phase identification


J. Kaduk, "A Rietveld Tutorial – mullite" Powder Diffr., Vol. 24, No. 4, December 2009

T. G. Fawcett, C. E. Crowder, S. N. Kabekkodu, J. A. Kaduk, "Improved Material Identification through Targeted Data Mining" Advances in X-ray Analysis, 2010 (with on-line tutorial, icdd.com)

J. Kaduk, "Crystallographic Databases and Powder Diffraction" Volume H, International Tables, IUCr, in progress.

Routinely identifies phases in 0.1-5 weight % concentration with good quality laboratory data

Cluster Analyses

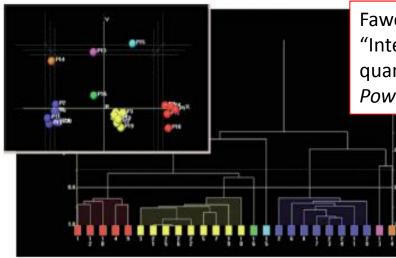
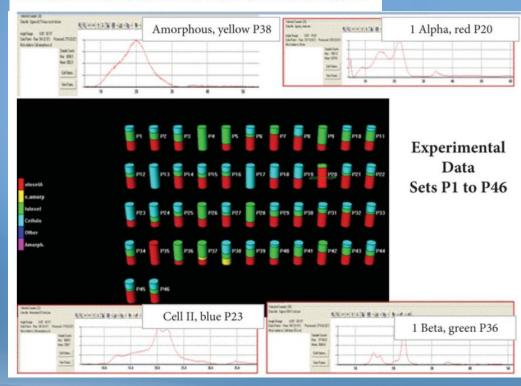


Figure 3. (Color online) Dendrogram and principal component analysis of 21 data sets from seven laboratories.

Fawcett, T. G., Needham, F., Faber, J., Crowder, C. E., (**2010**), "International Centre for Diffraction Data round robin on quantitative Rietveld phase analysis of pharmaceuticals", *Powder Diffraction*, 25(1), pp 60-67.

APPLICATION OF HIGH-THROUGHPUT CLUSTER ANALYSIS TO MULTIPLE DATA TYPE – COMBINING DATASETS

<u>G.J. Cunningham</u>, G. Barr, W. Dong, C.J. Gilmore, WestCHEM, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland; C. Frampton, Pharmorphix Limited, 250 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE


HOW TO COMBINE PXRD, RAMAN AND OTHER 1-D DATA IN HIGH THROUGHPUTPPXRD-623,954MANY PATTERNS AND MANY METHODS: NEW METHODS UTILISING MULTIPLE ANALYSISPPXRD-86,478PXRD WITH RAMAN SPECTROSCOPY, DSC AND IR DATAPPXRD-818,973QUANTITATIVE ANALYSIS OF MIXTURES USING HIGH THROUGHPUT INSTRUMENTATIONPPXRD-8120,457	HIGH-THROUGHPUT POWD	ER DIFFRACTION - THE SEARCH FOR POLYMORPHS	PPXRD-2	65,348
TECHNIQUES IN POLYMORPH AND SALT SCREENING SYSTEMS PPXRD-8 6,478 PXRD WITH RAMAN SPECTROSCOPY, DSC AND IR DATA PPXRD-9 18,973 QUANTITATIVE ANALYSIS OF MIXTURES USING HIGH THROUGHPUT INSTRUMENTATION PPXRD-6 120,457	· · · · · · · · · · · · · · · · · · ·		PPXRD-6	23,954
QUANTITATIVE ANALYSIS OF MIXTURES USING HIGH THROUGHPUT INSTRUMENTATION PPXRD_6 120 457			PPXRD-8	6,478
PPXRD-6 120.457	PXRD WITH RAMAN SPECT	ROSCOPY, DSC AND IR DATA	PPXRD-9	18,973
			PPXRD-6	120,457

Cluster Analyses

Reference materials for the study of polymorphism and crystallinity in cellulosics

- T. G. Fawcett,^{1,a)} C. E. Crowder,¹ S. N. Kabekkodu,¹ F. Needham,¹ J. A. Kaduk,² T. N. Blanton,³ V. Petkov,⁴ E. Bucher,⁵ and R. Shpanchenko⁶ ¹International Centre for Diffraction Data, Newtown Square, Pennsylvania ²Illinois Institute of Technology, Naperville, Illinois
- ³Eastman Kodak Company, Rochester, New York
- ⁴Central Michigan University, Mt. Pleasant, Michigan
- ⁵International Paper Company, Loveland, Ohio
- ⁶Moscow State University, Moscow, Russia

Powder Diffr., Vol. 28, No. 1, March 2013

Polymorphs Identified

Cellulose AZT Carbamazepine Heroin Calcium Phosphates Glycine Codeine Famotidine Cocaine Cimetidine

Cluster analysis doesn't depend on the specimen being crystalline !

Cluster Analyses

MAPPING DRUG CHEMISTRY FOR AZT AND CARBAMAZEPINE BY COMBINING CLUSTER ANALYSIS AND DIFFRACTION DATABASES

Timothy G. Fawcett, Soorya N. Kabekkodu

International Centre for Diffraction Data Newtown Square, PA, 19073

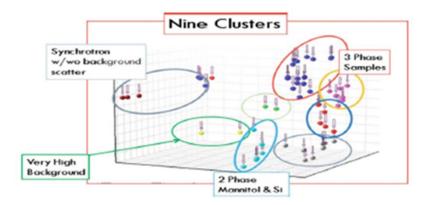


Figure 4. (Color online) PCA of 63 data sets from nine laboratories. The comments were added by the authors.

Declustering multiple data sets to get component contributions

Invited – CRYSTAL STRUCTURE SOLUTION FROM POWDER MIXTURES: THE PXRD-BTEM-RIETVELD METHOD

Marc Garland*, L.Guo, M. Schreyer, S. Thirunahari ICES, Jurong Island, Singapore

Outline – Best Practices

- Specimen Preparation-
- Round Robin, Experience
- General issues low scattering power, absorption difference in ingredients, crystallinity
- Asymmetric Crystals
- Particle size
- Granularity
- Orientation
- Impact on Intensities
- Separation Techniques

- Methods of Analysis –
- Customers Survey Data
- Experience
- Databases
- Noncrystalline Materials
- Reference Quality
- Elemental Filters
- Subfiles
- Pattern Simulations
- Rietveld Analysis
- Combined Techniques DXC/XRD
- Complimentary Analytical Techniques

Best Practices

- Focus on specimen preparation good data lead to good analyses
- Formulation analyses are difficult use all your tools
 - Subfiles
 - Complimentary analytical data Element filters
 - Data analysis tools Figures of Merit, Reference quality, Intensity and d-spacing matches
 - Data processing techniques (Rietveld reinteration, different search/match algorithms, cluster analyses, simulations especially with non-crystalline materials)

Ingredients

Dibasic Calcium Phosphate, Potassium Chloride, Ascorbic Acid (Vit. C), Microcrystalline Cellulose, Calcium Carbonate, DI-Alpha Tocopheryl Acetate (Vit. E), Magnesium Oxide, Ginkgo Biloba Leaf (Ginkgo Biloba) Standardized Ex, Gelatin, Ginseng Root (Panax Ginseng) Standardized Extract, Ferrous Fumarate, Niacinamide, Crospovidone, Starch, Zinc Oxide, Calcium Pantothenate, Silicon Dioxide, Manganese Sulfate, Pyridoxine Hydrochloride (Vit. B6), Riboflavin (Vit. B2), Thiamin Mononitrate (Vit. B1), Cupric Oxide, Vitamin A Acetate, Beta Carotene, Chromium Chloride, Folic Acid, Potassium Iodide, Sodium Molybdate, Sodium Selenate, Boron, Biotin, Phytonadione (Vit. K), Sodium Metavanadate, Nickelous Sulfate, Stannous Chloride, Cyanocobalamin (Vit. B12), Ergocalciferol (Vit. D2), Acacia Gum, Ascorbyl Palmitate, Butylated Hydroxytoluene (BHT), Citric Acid, DI-Alpha Tocopherol (Vit. E), FD&C Red No. 40 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake, Glucose, Hydroxypropyl Methylcellulose, Lactose, Magnesium Stearate, Polyethylene Glycol, Polysorbate 80, Potassium Sorbate, Sodium Aluminum Silicate, Sodium Ascorbate, Sodium Benzoate, Sodium Citrate, Sorbic Acid, Sucrose, Titanium Dioxide, Tribasic Calcium Phosphate, Water, Maltodextrin, Maltodextrin May Also Contain

Vitamin A (20% 70.0% % as Beta Carotene) 70.0% % Vitamin C 120.0 mg 200.0% % Vitamin D 100.0% % Vitamin E 200.0% % Vitamin K 25.0 mcg 31.0% % Thiamin 4.5 mg 300.0% % Riboflavin 5.1 mg 300.0% % Niacin 40.0 mg 200.0% % Vitamin B6 6.0 mg 300.0% % Folic Acid 400.0 mcg 100.0% % Vitamin B12 18.0 mcg 300.0% % Biotin 40.0 mcg 13.0% % Pantothenic Acid 10.0 mg 100.0% %	Vitamin C Niacin (B3) Root Extracts (Celluloses) Riboflavin (B2) Folic Acid	120 mg 40 mg >100 mg 5.1 mg 400 mcg	
Calcium 100.0 mg 10.0% % Iron 18.0 mg 100.0% % Phosphorus 48.0 mg 5.0% % Iodine 150.0 mcg 100.0% % Magnesium 40.0 mg 10.0% % Zinc 15.0 mg 100.0% % Selenium 70.0 mcg 100.0% % Copper 2.0 mg 100.0% % Chromium 120.0 mcg 100.0% % Chromium 75.0 mcg 100.0% % Chloride 72.0 mg 2.0% %	K,CI <i>in KCI</i> Ca <i>in Ca</i> CO3,CaHPO4 P <i>in Ca</i> HPO4 Fe <i>in Iron Fumarate</i>	147 mg 100 mg 48 mg 18 mg	<u>4-10 mg</u> Vit B6 HCI Calcium Pantothanate (overlap with Vit C)
Ginseng Root (Panax Ginseng) Standardized % % Extract 50.0 mg Ginkgo Biloba Leaf (Ginkgo Biloba) Standardized % % Extract 60.0 mg % % Nickel 5.0 mcg % % Silicon 4.0 mg % % Vanadium 10.0 mcg % %	Zn <i>in ZnO</i> Mg <i>in MgO, MgStearate</i> Si <i>in SiO2</i> Mn <i>in MnSO4</i> TiO2	15 mg 40 mg 4 mg 4 mg	<u>60 mg</u> Boron