

Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates

Agris Bērziņš^{1,2}, Edgars Skarbulis¹, Andris Actiņš¹ ¹ - Faculty of Chemistry, University of Latvia ² - Department of Chemistry, Durham University

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

 Screening and characterization of benperidol solvates (crystalline forms)

Introduction

- Solvate screening and physiochemical characterization
- Structural characterization of the solvates
- A study of the desolvation process
- Rationalization of the solvate formation
- Benperidol vs. droperidol
 - Comparison of the obtained
 - Explanations for different crystal structures

Introduction

Solvate screening

Solvent	Classification ¹	Group ²	Obtained phase
<i>n</i> -hexane, <i>n</i> -heptane	AAA	1	1
CCI ₄	HBD	1	(S _{TCC})
EtOAc	AP	2	I/S _{EtOAc}
BuOAc <i>, i</i> -PrOAc	AP	2	I
THF	EPD	2	I
tert-BME	EPD/AAA	2	I
1-butanol, 1-propanol, isobuthanol	HBD	3	I
2-propanol	HBD	3	1/11
ethanol	HBD	3	S _{Et}
methanol	HBD	3	S _{Me}
toluene, <i>o</i> -xylene	AALP	4	I/HH
acetone, cyclohexanone, butanone, 3-pentanone	AP	5	I
DMF	AP	6	1
dimethylsulfoxide	AP	6	no crystallization
CHCl ₃	EPD/HBD/AP	7	(S _{CLF})
CH ₂ Cl ₂ , 1,1-dichloroethane	AP	7	I
acetonitrile	AP	9	S _{ACN} /I
nitromethane	AP	9	I/S _{NM}
benzyl alcohol	AALP	10	S _{Benz}
1,4-dioxane	AP/EPD	11	S _{DIOX}
water	HBD	15	DH
cyclohexanol	HBD	-	I

¹ – Classification according to: Gramatica, P.; Navas, N.; Todeschini, R. *Trends Anal. Chem.* **1999**, 18, 461.
AP = aprotic polar, AALP = aromatic apolar or lightly polar, EPD = electron pair donors, HBD = hydrogen bond donors, AAA = aliphatic aprotic apolar.

² - Groups are based on cluster analysis of following solvent parameters: hydrogen bond acceptor propensity, hydrogen bond donor propensity, polarity/dipolarity, dipole moment, and dielectric constant according to: Gu, C.-H.; Li, H.; Gandhi, R. B.; Raghavan, K. *Int. J. Pharm.* **2004**, 283, 117.

DLATVIJAS UNIVERSITATE **Physiochemical characterization of solvates**

Figure 1. PXRD patterns of the benperidol solvates.

LATVIJAS UNIVERSITATE Physiochemical characterization of solvates

Desolvation products

Figure 3. PXRD patterns of the benperidol polymorphs.

Determination of crystal structures

Table 1. Crystallographic data for the benperidol phases .									
Solvate	ll ll	DH	S _{Ft}	S _{Me}	SACN	S _{EtOAc}	HH	S _{Renz}	III
Crystal	triclinic	monocl.	monocl.	monocl.	triclinic	triclinic	monocl.	orthor.	triclinic
system									
Space	ΡĪ	P2 ₁ /n	P2 ₁ /c	P2 ₁ /c	ΡĪ	ΡĪ	C2/c	Pbca	ΡĪ
group									
a (Å)	10.8417	11.0595	15.0684	15.1097	5.56500	5.4228	36.7342	13.7193	15.61501
b (Å)	16.2903	9.3896	10.8602	10.7200	14.1256	14.6014	5.58581	51.6467	11.48189
c (Å)	17.9497	20.4456	15.2555	15.3070	15.0478	14.8045	23.6629	7.43071	5.45694
α (°)	66.7233	90	90	90	109.2583	109.936	90	90	86.627
β (°)	87.0069	91.7206	117.6353	119.3538	90.9875	90.199	124.8680	90	96.618
γ (°)	85.0074	90	90	90	100.071	100.322	90	90	94.435
V (ų)	2900.55	2122.20	2211.69	2161.04	1095.91	1081.50	3983.71	5265.07	967.71
Z/Z′	6/3	4/1	4/1	4/1	2/1	2/1	8/1	8/1	2/1
Т, К	173(2)	173(2)	173(2)	173(2)	173(2)	100(2)	298(3)	298(3)	298(3)
GOF	1.013	1.243	1.028	0.972	1.018	1.030			
R _{wp}							0.02897	0.03356	0.03686
Pacing	0.682	0.689	0.684	0.672	0.681	0.690	0.675	0.651	0.681
coef.									

Determination of crystal structures

Determination of crystal structures

Figure 5. Overlay of crystal structures after final Rietveld refinement and geometry optimization in CASTEP.

Figure 7. Hydrogen bond patterns observed in crystal forms of benperidol.

¹ - McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. **2007**, 3814.

² - Spackman, M. A.; Jayatilaka, D. CrystEngComm **2009**, 11, 19.

Figure 9. Molecular packing in benperidol polymorphs and solvates. Identical supramolecular constructs were identified using XPac code^{1,2}.

- ¹ Gelbrich, T. *IUCr Newslett*. **2006**, 39.
- ² Gelbrich, T.; Hursthouse, M. B. *CrystEngComm* **2005**, 7, 324.

Figure 10. Arrangement of solvent molecules in the channels of type 2 solvates.

Desolvation process and products

Figure 11. A schematic representation of benperidol solvate preparation and the phase transformations occurring during their desolvation.

15

Desolvation process and products

ATVIJAS INIVERSITATE

Figure 13. A schematic representation of the driving forces for the phase transformations occurring during the desolvation of benperidol solvates.

Analysis of solvate formation

17

Solvent	Classification ¹	Group ²	Obtained phase
<i>n</i> -hexane, <i>n</i> -heptane	AAA	<u>- ereup</u> 1	
CCI	HBD	1	(S _{TCC})
EtOĂc	AP	2	I/S _{EtOAc}
BuOAc, <i>i</i> -PrOAc	AP	2	I
THF	EPD	2	I
<i>tert</i> -BME	EPD/AAA	2	I
1-butanol, 1-propanol, isobuthanol	HBD	3	I
2-propanol	HBD	3	1/11
ethanol	HBD	3	S _{Et}
methanol	HBD	3	S _{Me}
toluene, <i>o</i> -xylene	AALP	4	I/HH
acetone, cyclohexanone, butanone, 3-pentanone	AP	5	I
DMF	AP	6	I
dimethylsulfoxide	AP	6	no crystallization
CHCl ₃	EPD/HBD/AP	7	(S _{CLF})
CH_2CI_2 , 1,1-dichloroethane	AP	7	<u> </u>
acetonitrile	AP	9	S _{ACN} /I
nitromethane	AP	9	I/S _{NM}
benzyl alcohol	AALP	10	S _{Benz}
1,4-dioxane	AP/EPD	11	S _{DIOX}
water	HBD	15	DH
cyclohexanol	HBD	-	I

Analysis of solvate formation

Figure 14. A schematic representation of the driving forces for the solvate formation of the benperidol.

Figure 16. A schematic representation of the driving forces for the formation of the isostructural solvates of benperidol.

Figure 15. A representation of the voids in the crystal structures of benperidol polymorphs I and II.

- Crystallization of benperidol from various solvents produced nine new solvates. The existence of a certain solvate, however, cannot guarantee its facile formation and discovery.
- The main reason for the formation of various benperidol crystal structures was the possibilities of diverse molecular packing, resulting in different intermolecular interactions.
- The desolvation products were determined through an interplay of structural similarity and thermodynamic stability of the resulting polymorphs.
- The inability of benperidol molecules to pack efficiently without solvent was the main reason for solvate formation, whereas the presence of different functional groups in benperidol molecule enabled the formation of a wide range of stable solvate structures containing various solvent molecules.
- The possible interactions and the size and shape of the solvent molecules were important factors in solvate formation.

These results have been published: Bērziņš, A.; Skarbulis, E.; Actiņš, A. *Cryst. Growth Des.* **2015**, 15, 2337.

CO LATVIJAS UNIVERSITATE Comparison of benperidol and droperidol

Property	Benperidol	Droperidol		
Molecular structure	F r_{6} τ_{5} τ_{4} τ_{3} τ_{2} Benperidol	$F = \begin{bmatrix} 0 & & & \\ 0 & & & $		
Polymorphs	5 (I – V)	4 (I – IV)		
Solvates	11 solvates: DH S _{Et} S _{Me} HH S _{DIOX} S _{Benz} S _{ACN} S _{ACN} S _{ACN} S _{ACN} S _{ACN} S _{ACN} S _{LU} S _{LU}	11 solvates: NSH S _{Et} S _{Me} S _{Me} S _{ACN} S _{ACN} S _{NM} S _{CLF} S _{DCM} DH S _{DIOX} S _{DIOX} S _{TOL} S _{TOL} S _{TOL} S _{TOL}		
	No isostructural phases			
Driving factors	More efficient packing. Formation of additional H-bonds (DH , HH).	More efficient packing. Formation of additional H-bonds (DH). 20		

CONTINUERSITATE Comparison of benperidol and droperidol

• More efficient packing:

Phase	Benper	idol \rightarrow Droperidol	Droperidol $ ightarrow$ Benperidol		
i nase	$\Delta E_{Lattice}$	ΔE_{Total}	$\Delta E_{Lattice}$	ΔE_{Total}	
II	11.6	9.1	-7.2	0.5	
DH	10.7	11.4	9.0	11.1	
S _{Me}	38.8	43.6	-30.6	-20.2	
S _{Et}	49.4	56.3	-43.5	-35.3	
S _{ACN}	25.1	35.9	-14.9	-11.8	

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Thank you for your attention!

Acknowledgments:

- European Social Fund project "Support for Doctoral Studies at University of Latvia".
- 2014 Ludo Frevel Crystallography Scholarship Award.
- Edgars Skarbulis, Inese Sarceviča, Kirils Oļehnovičs (University of Latvia)