CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION

Dr. Partha Pratim Das Application Specialist, NanoMEGAS SPRL, Belgium pharma@nanomegas.com

www.nanomegas.com

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Advanced Tools for electron diffraction

Free transnational access

CEOS

NanoMEGAS

to the most advanced TEM equipment and skilled operators for HR(S)TEM, EELS, EDX, Tomography, Holography and various in-situ state-of-the-art experiments

X 2 SME participate

STRUCTURE ANALYSIS WITH ELECTRON DIFFRACTION

Why electrons?

- 10⁴⁻⁵ times stronger interaction with matter compared with X-ray
 - single crystal data on powder sample
 - short data collection time

- X- Ray peaks broaden with crystals of nm range

With Electron microscope we can study <u>nm- and micro-sized crystals</u>

STRUCTURE ANALYSIS WITH TEM

TEM : Electron diffraction advantages

TEM goniometer

Every TEM (electron microscope) may produce ED patterns and HREM from individual single nanocrystals

ED information: Cell parameter and symmetry determination

Measuring intensity values leads to structure determination

Crystals < 5 nm look like "X-Ray amorphous" but we can see them in TEM

Transmission electron microscopy (TEM)

- Diffraction: selected area, nano- and convergent beam electron diffraction
- Imaging: conventional, high resolution
- Chemical analysis: EDS and EELS

Image formation

Courtesy Northwestern Univ USA (ref. C.S.Own, L.Marks)

Digital precession interface for advanced TEM

JEOL microscopes

Zeiss microscopes

FEI microscopes

2011 Innovation Award Presented to NanoMEGAS SPRL,

University of Grenoble, and **CNRS** Grenoble

Microscopy

For development of ASTAR, an automated crystal orientation and phase mapping system for diffraction analysis n transmission electron microscope

X NanoMEGAS

www.nanomegas.com

STRUCTURE ANALYSIS WITH TEM with Precession(PEDT)

By tilting the TEM goniometer (single /double tilt, tilt rotation, tomography) we can reconstruct the reciprocal space of the crystal. Tilt angle may vary from – 70 to + 70 deg or less depending on TEM configuration and TEM goniometer specifications

Organic samples degrade fast under the beam – cooling sample at Liquid Nitrogen is mandatory

TEM - PEDT: 3D sampling of reciprocal

TEM ADT3D : Disorder & polycrystallinity

DISORDER

0kl: k = 2N+1

dvanced Tools for electron diffraction

POLYCRYSTALS

 \mathbf{c}^* tilted ~ 3°

Data Acquisition of Organics/Pharmaceuticals

Phenothiazine: anti-psychotic agent

Precession Electron Diffraction Tomography Tilt range: 40° Tilt angle: 1° Precession Angle: 1°

Phenothiazine, Data Collected with Cryo Holder, Libra 120

Data Acquisition of Organics/Pharmaceuticals

Phenothiazine: anti-psychotic agent

Experimental a = 9.03 Å b = 9.01 Å c = 12.04 Å β = 94.21°

New Polymorph !!!!!

X NanoMEGAS

Use of cryo cooling holder

Timepix Detector in Barcelona

1000 times more sensitive than CCD

Collaboration NanoMEGAS - Univ Barcelona - Univ Leiden

Structure determination of pharmaceutical compounds using TEM electron diffraction without Cryo Cooling

Data Collected with MEDIPIX, CBZ Crystal

NO CRYO USED !!!

Collection time < 3 min

(Data collected -25⁰ to 26⁰) 55 frames summed / 1⁰

NanoMEGAS

Data collected at Barcelona NO CRYO

0kl

2kl

Data Collected with MEDIPIX, Nicotinic Acid Crystal

NO CRYO USED !!!

NanoMEGAS

Collection time < 3 min

(Data collected -10° to 26°)

Resolution: 0.8 Å 20 frames **summed / 1**^o

Data collected at Barcelona NO CRYO Experimental a = 7.19 Å b = 11.74 Å c = 7.28 Å $\beta = 112.65$ Literature Reported a = 7.19 Å b = 11.69 Å c = 7.23 Å $\beta = 113.55 \text{ Å}$

1kl

h1l

hk1

SA Structure from ED Data The Structure can not be solved by DM, due to low completeness

Experimental

Literature Reported

Data Collected with MEDIPIX, Salicylic Acid Crystal

NO CRYO USED !!!

Collection time < 3 min

(Data collected -16° to 20°)

Resolution: 0.8 Å 38 summed / 1°

> Data collected at Barcelona NO CRYO

Experimental Two Data sets a = 5.14 Åb = 8.99 Åc = 7.49 Å $\beta = 106.01$

Literature Reported a = 4.89 Å b = 11.20 Å c = 11.24 Å $\beta = 92.49 \text{ Å}$

1kl

h1l

New Polymorph !!!!!

ED patterns Data collected at Barcelona

Crystal Structures solved from ADT^[1,2] data (new structures are marked with *)

	Space	N* ind.	N* ind.	Volume	Complete	[1] Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D. (2007)
	group	reflections	atoms	(Å3)	ness (%)	Ultramicroscopy 107, 507.
						[2] Kolb U., Gorelik T., Otten M. T. (2008) Ultramicroscopy 108, 763.
Phosphates						[3] Sedimaier S L. Mugnaioli F. Oeckler O. Kolb U. Schnick W.
SrP ₃ N ₅ O ^{(3)*}	Pnam	1790	25	1900	86	(2011) Chem - Fur / DOI:10.1002/chem.201101545
BasP13N12OaBr3*	P63/m	1343	11	1530	99	[4] Corolik T.E. Stewart & Kolb II. (2011) / Microscopy in print
Tungstates						[4] Gorelik T.E., Stewart A., Kolo C. (2011) J. Microscopy, in print.
Na ₂ W ₄ O ₁₃ ^[4]	P-1	738	10	262	69	(5) Mughaloli E., Gorelik T.E., Stewart A., Kolo O. (2011) III
Na ₂ W ₂ O ₇	Cmce	454	9	1264	91	Krivovichev S.V. (ed.): Minerals as Advanced Materials II, Springer,
K20AlaW240as	C2	1307	36	1983	84	Berlin Heidelberg, in print.
Layered materials						[6] Andrusenko I., Mugnaioli E., Gorelik T.E., Koll D.,
Sodium titanate (Na, Ti, O, ,) ^[5]	C2/m	517	11	510	72	Panthöfer M., Tremel W., Kolb U. (2011) Acta Cryst. B67, 218.
Sodium titanate (NaTi,O,OH-2H,O)吗*	C2/m	628	13	670	79	[7] Kolb U., Gorelik T., Mugnaioli E. (2009) In Moeck P., Hovmoeller
Hydrous silicate*	P-4m2	121	8	540	84	S., Nicolopoulos S., Rouvimov S., Petrok V.,
Ca-compounds						Gateshki M., Fraundorf P. (ed.): Electron Crystallography for
Calcite (CaCO ₂) ^[7]	R-3c	106	3	120	97	Materials Research and Quantitative Characterization of
Calcium silicate hydrate (Ca-Si-O5H-O)*	Cm	689	19	930	69	Nanostructured Materials, Materials Research Society Symposia
High pressure phases						Proceedings Volume 1184, Warrendale PA, USA, GG01-05,
Hydrous Al-pyroxene (Mg.Al(OH), AlSiO,)[4]*	C2/c	498	8	560	87	[8] Gemmi M. Fischer I. Merlini M. Poli S. Fumagalli P. Mugnaioli
Minerals						E Kolh LI (2011) Earth Planet Sci Lett in print
Barite (BaSO,)[9]	Pnma	355	5	350	82	[0] Muraniali E. Garalik T. Kalh II. (2009) Ultramicroscomy 109
Mullite (ALSI-Q.,)	Pbam	213	5	180	86	[9] Wughalon E., Gorenk T., Kolo G. (2009) On amicroscopy, 209,
Charoite 96((K Sr). (Ca.Na). [(Si. (O.OH))](OH.F). nH.O)[10]	P2./m	3353	89	4430	96	/38.
Charoite 90((K Sr). (Ca.Na). [(Si. (O.OH))](OH.F). nH.O][11]*	P2./m	2878	90	4450	97	[10] Rozhdestvenskaya I., Mugnaioli E., Czank M., Depmeier W., Kolb
Metal Organic Frameworks (MOF)						U. (2011) Min. Mag., in print.
MEU 4large (Cl.7n.N.,C.,O.H.,)[12]*	Fm-3m	655	8	32770	100	[11] Rozhdestvenskaya I., Mugnaioli E., Czank M., Depmeier W., Kolb
Basolite (C.H.CuO.)	Fm-3m	384	7	18640	99	U., Reinholdt A., Weirich T. (2010) Min. Mag., 74, 159.
Bi-MOF'	Pca2.	1158	34	3560	67	[12] Denysenko D., Grzywa M., Tonigold M., Schmitz B., Krkljus I.,
Inorganic nanophases		129292	1000	2222222	- AG-4	Hirscher M., Mugnaioli E., Kolb U., Hanss J., Volkmer D. (2011) Chem.
Intermetallic nanoparticles (ZnSb)[13]	Pbca	106	2	440	70	- Eur. J., 17, 1837.
Intermetallic nanoparticles (Zn. Sh.)[13]*	P-1	3651	30	1610	57	[13] Birkel C.S., Mugnaioli E., Gorelik T., Kolb U., Panthöfer M.,
Intermetallic matrix (NiTe)	P6./mmc	37	2	150	.93	Tremel W. (2010) J. Am. Chem. Soc., 132, 9881.
Intermetallic nanodomains (Ni, Te.)*	P6.mc	57	5	300	95	[14] Kolb U. Mugnaloli F. Gorelik T.F. (2011) Cryst. Res. Technol.
Semiconductor 6H-SiC	P6mm	52	6	130	100	46 542
Pseudo-spipel // i, Ti, NiO, V14	P-3c1	187	11	720	91	[15] Jiang L. Jorda LL. Vull. Baumes LA. Mugnaioli F. Diaz-Cabanas
Zeolites						[15] Jiang J., Jorda J.E., Ta J., Badmes E.M., Magnaton E., Diaz Cabanas
ZSM-5 (Na ALSI., O)	Pnma	2288	39	5490	79	
IM-5 (SI O)	Cmcm	2170	71	16380	68	
Natrolite (Na. Al. Si. O2H. O)[5]	Edd2	719	10	2250	92	
ITO MISE O. WISE	Cmmm	2735	39	14040	91	
ECS-3 ((Na K), ALSI, C., H.O., (pH.O)[16]*	Cc	4417	62	5040	72	
Organic					100	
NLO-active material 10-CNBA (CNH)[17]	P2./c	1871	30	2000	90	
Oligo p-benzamide OPBA3(18)	P2./c	3078	30	1755	81	
Oligo p-benzamide OPBA4[18]*	Cle	3576	39	4545	77	
higo province of britters	and a	0010		10.10		

Find Crystal Texture & Amorphous Content Random Diffraction Tomography

ASTAR (Orientation and phase imaging in TEM

Orientation map

NanoMEGAS Advanced Tools for electron diffraction

Scanning the TEM beam in precession mode Step size 0.1 nm -100 nm Dedicated CCD with > 100 frames /sec Typical area 5 x 5 microns Scanning times (typical) 5-10 min

ASTAR : Automated Crystal Orientation Mapping

What about the amorphous content in a sample?

Nanocrystalline or Amorphous ?

Example : Mg-Cu-Gd partly recrystallized metallic glass with Mg_2Cu and Cu_2Gd crystalline precipitates

ORGANIC CRYSTALS : THE RANDOM TOMOGRAPHY METHOD

ORGANIC crystals : beam sensitive

Only possible to collect several (non ZA oriented ED pattern

from different crystals

ASPIRIN

form I (P21/c): a=11.233(3) Å, b=6.544(1) Å, c=11.231(3) Å, â = 95.89(2)°

ASPIRIN

form II (P21/c): a=12.095(7) Å, b=6.491(4) Å, c=11.323(6) Å, â=111.509(9)°

ASTAR : Random precession diffraction tomography

Data collected with 120 kv TEM IIT Pisa

ASTAR : Random 3D diffraction tomography

UNIT CELL DETERMINATION - SOLVE CRYSTAL STRUCTURE

ASPIRIN

PED patterns improvement with precession

<u>CONCLUSIONS</u>

Try electron diffraction!

CONCLUSIONS

Most important reasons to use Electron Diffraction

- Nanocrystalline samples that give poor X-Ray patterns
- Inconclusive cell determination / crystal structure from X-Ray
- Detailed overview over crystalline vs amorphous content
- Solve crystal structures ab-intio from < 50 nm crystals

How Electron Diffraction can be used?

Use any TEM (120, 200, 300 kv LaB6 or FEG) 3D precession diffraction tomography (ADT-3D) can help to find ab-initio the unit cell /crystal structure of any unknown crystal > 50 nm Random precession diffraction tomography (ASTAR) to find unit cell and crystal structure by reconstructing reciprocal space from quasi-oriented PED patterns Reveal detailed local amorphous vs crystalline part in samples

Collaborators

University of Lieden, Group of Prof. J. P. Abrahams University of Cambridge, Group of Prof. Paul Midgley Center for Nanotechnology Innovation@NEST, Dr. Mauro Gemmi SIMAP-INP Grenoble-France, Dr. Edgar Rauch

Contact us at

pharma@nanomegas.com www.nanomegas.com/Pharma

WORKSHOP

PDF ANALYSIS OF AMORPHOUS AND NANOCRYSTALLINE MATERIALS FROM ELECTRON DIFFRACTION

Advanced Tools for electron diffragment

