EXPANDING THE SCOPE OF PDF-4/ORGANICS™ IN PHARMACEUTICAL PXRD ANALYSIS

S.N. Kabekkodu, T.G. Fawcett, K. Zhong, A. M. Gindhart, S. Gates, J. R. Blanton and T.N. Blanton

International Centre for Diffraction Data, Newtown Square, PA, USA

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

PDF-4/Organics

Release 2016 will have 501,964 entries

PDF-4/Organics

- Database specially designed to target Pharmaceutical and Forensic sample analysis using powder X-ray diffraction methods.
- Atomic coordinates
- Does contain editorially chosen inorganic phases
- Targeted subfiles
- Top 200 pharmaceuticals by US sales
- Raw diffraction patterns
- Amorphous and poorly crystalline patterns
- Trade names where available
- Editorially reviewed organic nomenclature

Top 200 Pharamceuticals

 PDF4- Organics database continually expanded in recent years to cover commercially important pharmaceuticals and other phases like polymer

How do we select materials?

- Reviewed top 200 drug list based on 2011/2012 prescriptions/sales
- 295 brands drugs (361 small molecule APIs) were investigated
- 79 APIs materials patterns were collected

ICDD-Argonne-IIT cooperative work

	Pharmaceutical	PDF #
1	Tazobactam Sodium	64-1626
2	Atomoxetine Hydrochloride (Strattera®) 🛛 🛧	64-1490
3	Piperacillin Sodium (Pipracil [®])	64-1631
4	Rabeprazole Sodium (AcipHex [®])	64-1632
5	Montelukast Sodium (Singulair T [®])	64-1633
6	Valsartan (Diovan [®])	64-1634
7	Daptomycin	64-1635
8	Octreotide Acetate (Sandostatin [®])	64-1636
9	Rosuvastatin Calcium (Crestor [®])	64-1637
10	Iohexol (Omnipaque [®])	64-1638
11	Bivalirudin Trifluoroacetate	64-1639
12	Vancomycin Hydrochloride (Vancocin®) 🛛 🛧	64-1640
13	Risedronate Sodium Hemipentahydrate 🛛 ★	64-1491
14	Ziprasidone Hydrochloride Monohydrate (Geoden®) ★	64-1492
15	Capecitabine (Xeloda [®])	64-1493
16	Levalbuterol Hydrochloride (Xopenex®) ★	64-1494
17	Fingolilmod Hydrochloride (FTY-720) ★	64-1495
18	Ibandronate Sodium Monohydrate (Bonivaa®) ★	64-1496
19	Paliperidone (Invega®) ★	64-1497
20	Dutasteride (Avodart®) ★	64-1498
21	Raltegravir Potassium (Isentress®) 🛛 ★	64-1499
22	Sitagliptin Phosphate Monohydrate (Januvia [®])	64-1500
23	Rivastigmine Hydrogen Tartrate (Exelon®)	64-1501
24	Darunavir Ethanolate (Prezista [®]) 🛛 🛧	64-1502
25	Norgestimate	64-1503
26	Metoprolol Succinate (Toprol XL [®])	64-1504
27	Salbutamol Sulfate (Albuterol sulfate) 🛛 🛧	64-1505
28	Levothyroxine Sodium Pentahydrate (Pestanal®) ★	64-1506
29	Escitolopram Oxalate Oxalic Acid Hydrate (Lexapro [®])	64-1507
30	Bendamustine Hydrochloride Monohydrate (Cytostatsan [®])	★ 64-1508

7 publications

7 rapid communications

1.			
		Pharmaceutical	PDF#
	1	Folic Acid Dihydrate 🛛 ★	65-1262
	2	Rilpivirine (Edurant®) ★	65-1406
	3	Beta 17alpha-Estradiol Hemihydrate	65-1407
	4	Naproxen Sodium (Aleve [®])	65-1408
	5	Everolimus (Certican [®])	65-1532
	6	Abiraterone (Zytiga®)	65-1409
	7	Choline Fenofibrate (Trilipix [®])	65-1410
	8	Lacosamide (Vimpat®) ★	65-1411
	9	Methylprednisolone (Medrol [®])	65-1412
	10	Nilotinib (Tasigna [®])	65-1413
	11	Solifenacin (VESIcare [®])	65-1414
	12	Tamsulosin (Flomax [®])	65-1415
	13	Tramadol Hydrochloride (Tramal®) ★	65-1416
	14	Cephalexin Hydrate (Keflex [®])	65-1417
	15	Saxagliptin Hydrochloride Dihydrate (Onglyza®) ★	65-1418
	16	Azithromycin (Zithromax [®])	65-1419
	17	Fluoxetine (Prozac [®])	65-1420
	18	Warfarin	65-1421
	19	Pravastatin (Pravachol [®])	65-1533
	20	Atazanavir (Reyatez [®])	65-1426
	21	Bortezomib (Velcade [®])	65-1427
	22	Formoterol (Symbicort [®])	65-1428
	23	Metoprolol (Lopressor [®])	65-1429
	24	Salmeterol (Severent diskus [®])	65-1430
	25	Telaprevir (Incivek [®])	65-1431
	26	Pantoprazole (Protonix [®])	65-1424
	27	Citalopram (Cipramil [®])	65-1422
	28	Mupirocin (Bactroban [®])	65-1423
	29	Rifaximin (Xifaxan [®])	65-1425

SET 65

4 publications

1 rapid communication

Minerals in the Pharmaceutical Industry

Out of ~4,500 mineral species, ~30 are used in the Pharmaceutical industry

- Active ingredients
- Excipients

 Synthetic analogues are more economical to synthesize than to extract and purify naturally occurring minerals except clay minerals (more difficult and expensive to synthesize)

Applied Clay Science 47 (2010) 171-181

Minerals in the Pharmaceutical Industry

- Oxides (Rutile, Periclase, Zincite)
- Carbonates (Calcite, Magnesite, Hydrocincite, Smithsonite)
- Sulfates (Epsomite, Mirabilite, Melanterite, Chalcanthite, Alum)
- Chlorides (Halite, Sylvite)
- Hydroxides (Brucite, Gibbsite, Hydrotalcite)
- Sulfides (Greenockite)
- Phosphates (Hydroxyapatite)
- Phyllosilicates (smectite, palygorskite, sepolite, kaolinite, talc, mics)

Some Examples of Minerals as Active Ingredients

Mineral	Chemical Formula	Therapeutic activity
Periclase	Mg O	Antacid, mineral supplement
Zincite	Zn O	Antiseptic and disinfectant, solar protector
Rutile	Ti O2	Dermatological protector
Calcite	Ca CO3	Antacid
Melanterite	Fe SO4. 7H2 O	Antianemic
Chalcanthite	Cu SO4. 5H2 O	Antiseptic and disinfectant
Alum	K AI (SO4)2. 12 H2 O	Antiseptic and disinfectant
Brucite	Mg (OH)2	Antacid
Gibbsite	AI (OH)3	Antacid
Hydroxyapatite	Ca5 (PO4)3 (OH)	Mineral supplement
Montmorillonite	(Al1.67 Mg0.33) Si4 O10 (OH)2	Antacid, gastrointestinal protector
Kaolinite	Al2 Si2 O5 (OH)4	gastrointestinal protector, anti-inflammatory
Talc	Mg3 Si4 O10 (OH)2	Dermatological protector
Muscovite	K Al2 (Si3 Al) o10 (OH)2	Cosmetic creams

Searches Based on Mineral Classifications

Formula • Any Formula HM:C-1 Formula Type (ANX) • a=5.290Å b=9.173Å c=9.460Å s== 🌖 α=90.460° Name • o 💼 β=98.680° . γ=90.090° Mineral Classification • ------BRSA - Rosasite (Group) -BOS - Roscherite (Supergroup) •• - **1** - **1** RSL - Roselite (Group) . . . STK - Rozenite (Group) +RUT - Rutile (Supergroup) SCA - Scapolite (Supergroup) . - **-**SEI - Seidozerite (Group) SEP - Sepiolite (Family) Group) SKU - Skutterudite (Group) SME - Smectite (Family) SMO - Smolyaninovite (Supergroup) •• SPL - Spinel (Supergroup) STA - Staurolite (Group) STB - Stibnite (Supergroup) STL - Stilpnomelane (Family) SOH - Stottite (Supergroup)

talc

Populating Excipients

- Identifying and populating excipients in the database using United States Pharmacopeia
- Cross reference the entries with atomic coordinates to facilitate quantitative phase identification

Hydrogen Storage Materials Inorganic Intercalate Ionic Conductors Merck Metals & Alloys Micro & Mesoporous Mineral Related Modulated Structure -NBS Nucleosides & Nucleotides Organics Pharmaceutical No Subclass Excipient Pigment & Dye Polymer Porphyrins, Corrins & Complexes

Quality Enhancements

- Poorly characterized patterns are replaced by better patterns wherever possible
- One such example is Iron Fumarate
- There was only one entry from 1968 based on visual intensities
- No better quality data was found in the published literature
- ICDD purchased this sample and with the help of Mathew Suchomel synchrotron data was collected at APS 11-BM

Common Names, Trade Names

Bioactivity: Used as an immunosuppressant to prevent rejection of organ transplants, also used for treatment of renal cell cancer and other tumors. **General Comments:** Pattern measured in 0.001° steps and rebinned to 0.02° steps; scattering from the Kapton capillary was subtracted. An "Al2 O3": "La B6" mixture was used as an external standard. Raw Data Comment: Pattern measured at beam line 11-BM, (goniometer radius 1000 mm) Advanced Photon Source, Argonne National Laboratory, Lement, Illinois, USA. Data collected using Debye-Scherrer geometry. **Sample Source or Locality:** Commercial material, purchased from Sigma-Aldrich. **Temperature of Data Collection:** Pattern taken at 300 K.

Quality Marks

- Quality marks are essential while working with larger database with similar diffraction patterns
- Data validation and the quality mark assignments is the most important step in the editorial process

Quality Mark (QM) Types

- Experimental patterns
- Calculated Patterns (based on experimentally determined crystal structures)

QM for Experimental Patterns

- Star (Well characterized chemically and crystallographyically, No unindexed lines, Δ2θ≤0.03°)
- **R** (d values from whole pattern fitting, like Rietveld, Le Bail refinement)
- I (Well characterized chemically No unindexed strong lines, Δ2θ≤0.06°)
- **B** (Do not meet the criteria for *, I)
- **O** (Poorly characterized, with editorial comment explaining the reason)
- **C** (author calculated d values)
- **H** (Hypothetical)
- M (Minimally acceptable non crystalline pattern)
- G (Good non crystalline pattern, usually has additional characterization other than XRD)

Calculated Pattern Quality Mark assignment process

Calculated Pattern QM Notations

Category	QM
No Warning	*
Minor Warning	Ι
Significant warning	В
Assigned structure (Prototype)	Р
Hypothetical	Н
Major warning	0

Disordered Structures

Poorly described disordered structures (missing site occupation factor) will lead to error in the calculated intensity and Reference Intensity Ratio

 $I/I_c = \mu \gamma \rho_c / \mu_c \gamma_c \rho$

μ = Linear attenuation coefficient
γ = Absolute scale factor
ρ = Density
(Subscript "c " corresponds to corundum)

Error depends on the extent of disorder and the quality mark will be lowered accordingly

ICDD is re-abstracting targeted disordered crystal structures to improve the quality of the pattern

Dimethylammonium manganese formate

Data Content

≶ (C6 H9 N O)r	n - 00-063-1503	×								
File Edit Plots	Window Help									
Save Print Prefer	Image: Series Toolbox Image: Series Too									
Cu Ka1 1.54056 Å Fixed Slit Intensity	 Simulated Profile (Exp-based) Raw Diffraction Data (PD3) 12,000 									
2θ (°) 10.7803 4 21.5883 4 27.7529 3 40.3443 90.9102	d (Å) I h k I * 8.199950 827									
PDF	Status: Primary QM: O Good Pressure/Temperature: Ambient									
Experimental	Chemical Formula: (C6 H0 N O)n	-								
Physical	Structural Formula:									
Crystal	Empirical Formula: C6 H9 N O									
Optical	Weight %: C64.84 H8.16 N12.60 O14.39									
Structure	Structure Atomic %: C35.29 H52.94 N5.88 O5.88									
Miscellaneous	ANX:									
References	Compound Name: Povidone, amorphous									
Comments	Mineral Name:									
	Common Name: polyvidone									

Digital Object Identifier

Jing Teng, Simon Bates, David A. Engers^{*}, Kevin Leach, Paul Schields and Yonglai Yang

Article first published online: 25 MAY 2010 DOI: 10.1002/jps.22204

Copyright © 2010 Wiley-Liss, Inc.

Issue

Journal of Pharmaceutical Sciences

FREE

Special Issue: Dedicated to Stephen R. Byrn Volume 99, Issue 9, pages 3815–3825, September 2010

Miscellaneous

References

Comments

Modulated Structures in Pharmaceuticals

Satellite reflections around strong Bragg peaks can not be indexed in 3D using the conventional reciprocal lattice vectors

Tetrahydropyrrolizinone derivative

Acta Cryst. (2009). B65, 249–268

Modulated Structures in Pharmaceuticals

- Modulated structures form on account of perturbation in atomic position, occupation and/or thermal motion
- If period of fluctuation matches that of the 3D unit cell then a superstructure results otherwise an incommensurate modulated structure is obtained

Harmonic modulation functions

Any parameter describing structure i.e. atomic occupancies, coordinates or displacements can be modulated. The fact that modulation functions are periodic leads to possibility to express them as sum of harmonic functions:

Courtesy: V. Petricek, Institute of Physics, Praha, Czech Republic

Description of Modulation

C6 H5 ((C7 H6 N (O H) (O)) O (Si (C H3)2 (C (C H3)3))) - 05-001-0307

Positional Displacement Parameters (612)						Atomic Displacement Parameters (288)					Occupation Modulation (0)								
Atom	Axis	WV ID	Cos	Sin		Atom	WV ID	Tensor El.	Cos	Sin									
C02	x	1	0.06423(16)	0.01948(16)		C02	1	U11	0.0021(5)	0.0012(5)									
C02	у	1	-0.02180(17)	0.00385(17)		C02	1	U12	-0.0007(4)	-0.0005(4)									
C02	z	1	0.01805(5)	-0.03411(5)		C02	1	U13	0.0019(5)	0.0012(4)									
C02	x	2	0.00373(16)	0.00023(16)	1	C02	1	U22	0.0017(6)	-0.0014(6)	1								
C02	у	2	0.00158(17)	-0.00333(17)	1	C02	1	U23	-0.0002(5)	0.0000(5)	1								
C02	z	2	-0.00018(5)	0.00416(5)	1	C02	1	U33	-0.0010(7)	0.0024(6)									
C02	x	3	-0.00050(18)	-0.00257(18)	Ŧ	C02	2	U11	-0.0001(5)	-0.0002(5)	-								
	Occupational - Crenel (0)						Displacement - SawTooth (0)												

Powder Diffraction Pattern of a Modulated Structure

Dotted lines indicate satellite reflections

An Example of Modulated Structures in Excipients: Sodium Carbonate

At room temperature anhydrous sodium carbonate (γ phase) shows incommensurate modulation

First observed in 1964 with strong satellite reflections and solved in the harmonic approximation using one modulation wave and first order satellites

Structure was re-investigated in 2003 using fifth order satellites and additional modulation waves

Acta Cryst. (2003). B59, 337-352

The Comparison

Average Structure

Incommensurately Modulated Structure

 $q_1 = (0.182)a^* + (0.322)c^*$

Comparison of Powder X-ray Diffraction Patterns

Conclusions

- PDF-4/Organics was developed by targeting materials characterization of pharmaceutical and forensic samples using powder X-ray diffraction methods
- Targeted materials list is continuously reviewed to keep up-to-date with the developments in phase identification using PXRD
- More data is added to the existing card wherever available (example: atomic coordinates, property sheet, common & trade names, polymorphic designation, digital object identifiers)

