

detecting the future

Instrumentation for tackling current and future challenges in pharmaceutical R&D

Dubravka Šišak Jung & Thomas Hartmann 20/05/2015

> DECTRIS Ltd. 5400 Baden Switzerland www.dectris.com

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Agenda

Where does laboratory XRPD analysis stand?

- 1. Old problems new challenges?
- 2. MYTHEN: Microstrip detector
- 3. MYTHEN + STOE Stadi MP
 - Higher accuracy in XRPD analysis
 - PDF!
- 4. New opportunities

- 1. Qualitative analysis
- 2. Quantitative analysis

1. Data collection

- Laboratory
- Synchrotron

- Overlap
- Data statistics
- Radiation damage
- High throughput

1. Data collection

- Laboratory
- Synchrotron

2. Identification

- Crystalline materials
- "structurally challenged samples"
- Mixture

- Overlap
- Data statistics
- Radiation damage
- High throughput
- Single crystal vs bulk
- Crystal structure vs material
- Polymorphs
- Excipients
- Interactions thereof

1. Data collection

- Laboratory
- Synchrotron

2. Identification

- Crystalline materials
- "structurally challenged samples"
- Mixtures
- 3. Detection limit
- 4. Quantification limit

- Overlap
- Data statistics
- Radiation damage
- High throughput
- Single crystal vs bulk
- Crystal structure vs material
- Polymorphs
- Excipients
- Interactions thereof

1. Data collection

2. Identification

- Crystalline materials "structurally changes" Mivt
 - Mixtures
- 3. Detection limit
- 4. Quantification limit

- verlap Data statistics
- Radiation damage
- High throughput
- Single crystal vs bulk
- Crystal structure vs material
- Polymorphs
- Excipients
- Interactions thereof

1. Data collection

- Laboratory
- ACCUR - Synchrotron (Fabia Gozzo)

2. Identification

- Crystalline materials
- "structura lenged samples"
- Mixtures

SINCE 188

- 3. Detection limit (F. Go
- 4. Quantification (F. Gozzo) MIN QI

- Overlap Data statistics
- Radiation damage
- High throughput
- Single crystal vs bulk
- Crystal structure vs material
- Polymorphs
- Excipients
- Interactions thereof

1. Data collection

- Laboratory
- Synchrotron
- 2. Identification
- ACCUF - Crystalline materials
 - "structurate challenged samples"
 - Mixtures

SINCE 188

3. Detection limit

4. Quantification Xi

- Overlap Data statistics
- Radiation damage
- High throughput
- Single crystal vs bulk
- Crystal structure vs material
- Polymorphs
- Excipients
- Interactions thereof

Accuracy in XRPD: important factors

- 1. Instrumentation
- 2. Physical properties of a material
- 3. Expertise of an analyst
- 4. Software support
- 5. Computing power

Accuracy in XRPD: important factors

- 1. Instrumentation
- 2. Physical properties of a material
- 3. Expertise of an analyst
- 4. Software support
- 5. Computing power

Accuracy in XRPD: important factors

- 1. Instrumentation
- 2. Physical properties of a material
- 3. Expertise of an analyst
- 4. Software support
- 5. Computing power

Where are the limits of laboratory XRPD analysis?

Stoe Stadi MP + MYTHEN 1K detector

- 1. Source
- 2. Detector (F. Gozzo)
- 3. Geometry (M. Ermrich)
- 4. Optics
- 5. Mechanics (positioning)

Stoe Stadi MP Diffractometer

Basic parameters of Stoe Stadi MP diffractometer			
Tube	Cu,(Mo), Ag		
Monochromator	Ge 111		
Geometry	Debye-Scherrer		
Mode	Continuous scan		
Radius [mm]	190		
Software	WinX ^{pow}		
Detector	MYTHEN 1K		

Stoe Stadi MP Diffractometer

Basic parameters of Stoe Stadi MP diffractometer			
Tube	Cu,(Mo), Ag		
Monochromator	Ge 111		
Geometry	Debye-Scherrer		
Mode	Continuous scan		
Radius [mm]	190		
Software	WinX ^{pow}		
Detector	MYTHEN 1K		

MYTHEN detectors

PAUL SCHERRER INSTITUT

Pixel/microstrip detectors operating in single-photon counting mode

MYTHEN detectors

Direct detection of X-rays Pixel/microstrip detectors

detecting the future

MYTHEN detectors

Direct detection of X-rays Pixel/microstrip detectors

detecting the future

MYTHEN detectors

Interaction of X-rays and Si produces charge. Charge drifts through the sensor.

MYTHEN detectors

SINCE 1887

Efficiency of the silicon sensor depends on its thickness and X-ray energy.

MYTHEN detectors

24 SINCE 1887

5

Signals with Energy higher than the threshold are accepted for counting.

Basic technical data: MYTHEN 1K detector			
Sensor	Silicon		
No. strips	1280		
Strip width [µm]	50		
Dynamic range [bit]	24		
Energy range [keV]	5-40		
Point spread function	1 strip		
Adjustable energy threshold	Yes		
Readout time [ms]	0.3		
Sensor thickness [µm]	320, 450, 1000		

Basic technical data: MYTHEN 1K detector		in Stoe Stadi MP
Sensor	Silicon	
No. strips	1280	19.2° coverage
Strip width [µm]	50	0.015° sampling
Dynamic range [bit]	24	1:16.8x10 ⁶
Energy range [keV]	5-40	
Point spread function	1 strip	No blurring
Adjustable energy threshold	Yes	No noise
Readout time [ms]	0.3	22 Hz
Sensor thickness [µm]	320, 450, 1000	Cr, Cu, Mo, Ag

Accuracy in XRPD

- 1. Crystalline samples
- 2. "Structurally challenged samples"

1. Instrumental set up

- Cu radiation
- MYTHEN 1K, 1000 µm sensor thickness
- Variable data collection time

2. Structure determination and refinement

- Level of details
- Accuracy

Test case: D-mannose

- Known crystal structure
 - Solved from single crystal data
 - Z' = 2 (24 atoms/a.u.)
 - A few ambiguities (Hydrogens missing, ADP values)
- Commercial sample
 - Controlled crystallite size
 - Uniform morphology

Test case: D-mannose

- Procedure
 - Measure XRPD data
 - Refine single-crystal model against XRPD data with minimal model bias
 - Evaluate results
 - Compare models obtained from single-crystal and XRPD data
 - independent XRPD evaluation

Test case: D-mannose

14 h measurement time Restraint-free refinement

Sequence number of the coordinate (X, Y, Z)

Test case: D-mannose

Test case: D-mannose¹

Enhancing accuracy in structural analysis:

- Reducing a model-bias by restraint-free refinement
- Accuracy comparable to single-crystal data
- Fine level of structural details (residual el. densities)
- Evaluation of the success of the refinement *via* diff. Fourier map

¹Šišak Jung, D.,Hörmann, Ch. Adv. X Ray Anal. 58, in press

STOE

Accuracy in XRPD: crystalline samples

Monomer-trimer ambiguity

- Unknown crystal structure
 - Monomer, with ability to polymerize
- Commercial sample
 - Controlled crystallite size
 - Uniform morphology
 - Spectroscopic studies
 - Name suggests monomeric specie

Monomer-trimer ambiguity

- Procedure
 - Measure XRPD data
 - Construct several models using DFT approach
 - Solve the structure using directspace methods
 - Refine the model(s) using variable weights on geometrical restraints
 - Evaluate results

SINCE 188

- Compare models obtained from DFT and XRPD data

Monomer-trimer ambiguity¹

SINCE 1887

Comparison of the molecular structure obtained from XRPD data (red) and Molecular structure obtained by the DFT optimization of the most stable conformer

¹Hrenar, T., Kalinovčić, P., Jović, O., Šišak Jung, D., J. Powd. Diffr., proceedings of EPDIC – accepted

DECTRIS[®] detecting the future

- **1.** Problem: local structure with Pair Distribution Function
- 2. Instrumentation setup
 - Source, Detector
 - Calibration
- 3. Data collection and processing
- 4. Accuracy of the results

General considerations: PDF at Australian Synchrotron

(a) E = 21 keV, $2\theta = 149^{\circ}$ (b) E = 21 keV, $2\theta = 80^{\circ}$ (c) E = 15.4 keV, $2\theta = 149^{\circ}$ (d), (e) difference curves

DECTRIS

detecting the future

PDF analysis requires high energy to be used and high angles to be measured

Haverkamp, R.G., Wallwork, K.S. (2009) J. Synch. Rad. 16, 849-856

General considerations: PDF at Australian Synchrotron

PDF analysis does not necessarily require long exposure times Haverkamp, R.G., Wallwork, K.S. (2009) *J. Synch. Rad.***16**, 849-856

Accuracy in XRPD: structurally challenged

General considerations: PDF at Australian Synchrotron

DECTRIS®

- 1. Problem: PDF in Stoe Stadi MP instrument
 - Naphtalene sample

2. Instrumentation setup

- Optimizing instrumental set up: Source, Detector

2. Instrumentation setup

- Source, Detector
- Calibration: proper trimming and flat-field files

Absolute Intensity

2Theta

detecting the future

46 🕬 Juhas, P., Davis, T., Farrow, C.L. and Billinge, S.J. L., J. Appl. Cryst. **2013**, 46, 560-566. DECTRIS

4. Accuracy of the results

detecting the future

New opportunities for new challenges

- 1. MYTHEN2
- 2. PILATUS3 CdTe

New opportunities for new challenges

1. MYTHEN2

- 1. Higher frame rates
- 2. Symmetric&compact design
- 3. Lower price

New opportunities for new challenges

2. PILATUS3 CdTe

- 1. 2D detector
- 2. Energy range 8 100 keV
- 3. 500 Hz

PILATUS3 X CdTe - Hard X-ray detection without compromise

A few guidelines

- 1. Never trust a chemist
- 2. Define what it is goal of your analysis
- 3. Think carefully about your instrument set up
- 4. Make sure you understand details
- 5. High accuracy in structure analysis can be obtained with laboratory XRPD data:
 - Ab initio structure determination and restraint-free refinement reduces model bias
 - Results can be comparable to single-crystal case
 - XRPD data is sensitive to fine structural details
 - Collecting laboratory XRPD data doesn't take long -> avoid unnecessary radiation damage!

6. Ask your diffractometer provider

detecting the future

Thank you for your attention!

www.dectris.com

DECTRIS Ltd. 5400 Baden Switzerland www.dectris.com