Excipient Reference Data in the Powder Diffraction File (PDF[®]) for Phase Identification in Pharmaceutical Formulations

J. QUAGLIARELLO, K. KRISHNAN, M. CARR, S. GATES-RECTOR, T. FAWCETT, <u>T. BLANTON</u> INTERNATIONAL CENTER FOR DIFFRACTION DATA, NEWTOWN SQUARE, PA, USA

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Why have excipients in ICDD[®] databases?

The formulation of pharmaceutical drugs is a combinative process that incorporates a multitude of chemical constituents, which may be organic, inorganic, or polymeric in nature.

While the Active Pharmaceutical Ingredient (API) in a formulation is the key component that provides a drug its therapeutic functionality, excipients are generally the bulk of the content.

Due to the potential complexity of a diffraction pattern obtained from the analysis of a multiphase pharmaceutical drug, it is often necessary to analyze and identify all excipients before one can make an accurate identification of an API.

Currently, ICDD maintains an excipient subclass in the PDF that follows the list provided by the United States Pharmacopeia (USP). In PDF-4/Organics Release 2016, there are over 2,600 entries for excipient phases.

Excipients

Tablet and capsule formulations include

- 1. Diluents/fillers increase the bulk content of the dosage form
- 2. Binders promote cohesive compact during direct compression.
- 3. Disintegrants breaks the dosage form into smaller particles when it comes in contact with a liquid
- 4. Lubricants used to reduce the friction between the tablet and die cavity
- 5. Glidants used to improve the flow property of the formulation
- 6. Coatings applied to make swallowing easier, control release rate, extend storage life
- 7. Misc.
- $\circ~$ Flavorants improve the flavor or give a pleasant taste to the formulation
- Colorants added to the formulation for visual appeasement and increase the patent compliance or for identification of the formulation
- Adsorbants used when there is an need to add a liquid or semisolid ingredient in the formulation

Excipient reference - USP-NF

The USP 39-NF 34 is a combination of two compendia, the United States Pharmacopeia (USP) and the National Formulary (NF). It contains standards for medicines, dosage forms, drug substances, <u>excipients</u>, biologics, compounded preparations, medical devices, dietary supplements, and other therapeutics.

Calcium Citrate

C12H10Ca3O14 · 4H2O 570.49 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, calcium salt (2:3), tetrahydrate;

Calcium citrate (3:2), tetrahydrate [5785-44-4].

DEFINITION

Calcium Citrate contains four molecules of water of hydration. When dried at 150 ° to constant weight, it contains NL T 97.5% and NMT 100.5% of Ca $_3(C_6H_5O_7)_2$.

IDENTIFICATION • A.

Analysis: Dissolve 0.5 g in a mixture of 10 mL of water and 2.5 mL of 2. N nitric acid. Add 1 mL of mer curic sulfate TS, heat to boiling, and add 1 mL of potassium permanganate TS.

Acceptance criteria: A white precipitate is formed. • B.

Sample: 0.5 g of Calcium Citrate Analysis: Ignite completely the *Sample* at as low a temperature as possible, cool, and dissolve the residue in dilute glacial acetic acid (1:10). Filter, and add 10 mL of ammonium oxalate TS to the filtrate.

Acceptance criteria: A voluminous white precipitate that is soluble in hydrochloric acid is formed.

ASSAY

 PROCEDURE Sample solution: Dissolve 350 mg of Calcium Citrate, previously dried at 150° to constant weight, in 12 mL of 0.5 M hydrochloric acid, and dilute with water to about 100 ml. and 10 mL of 0.2 M edetate disodium. If necessar y, adjust with 1 N sodium hydroxide or 1 N hydrochloric acid to a pH of 5.5. Transfer to a 100-mL volumetric flask, and dilute with water to volume. This solution contains 0.05 μ g/mL of fluoride.

Linearity solution B: Transfer 5.0 mL of the Standard solution to a 250-mL plastic beaker, and proceed as directed for Linearity solution A beginning with "Add 50 mL of water,". This solution contains 0.25 µg/mL of fluoride. Linearity solution C: Transfer 10.0 mL of the Standard solution to a 250-mL plastic beaker, and proceed as directed for Linearity solution A beginning with "Add 50 mL of water,". This solution contains 0.50 µg/mL of fluoride. Sample solution: Transfer 1.0 g of Calcium Citrate to a 100mL beaker. Add 10 mL of water and, while stirring, 10 mL of 1 N hydrochloric acid. When dissolved, boil rapidly for 1 min, transfer the solution to a 250-mL plastic beaker, and cool in ice water. Add 15 mL of 1.0 M sodium citrate and 10 mL of 0.2 M edetate disodium, and adjust with 1 N sodium hydroxide or 1 N hydrochloric acid to a pH of 5.5. Transfer this solution to a 100-mL volumetric flask, and dilute with water to volume.

Electrode system: Use a fluoride-specific, ion-indicating electrode and a silver-silver chloride reference electrode connected to a pH meter capable of measuring potentials with a minimum reproducibility of ± 0.2 mV (see *pH* (791)). Analysis

Samples: Linearity solution A, Linearity solution B, Linearity solution C, and Sample solution

Transfer 50 mL of each *Linearity solution A, Linearity solution B,* and *Linearity solution C* to separate 250-mL plastic beakers, and measure the potential of each solution with the *Electrode system.* Between each reading wash the electrodes with water, and absorb any residual water by blotting the electrodes dry. Plot the logarithms of the fluoride concentrations (0.05, 0.25, and 0.50 µg/mL, respectively) versus potential to obtain a Standard response line. Transfer 50 mL of the *Sample solution* to a 250-mL plastic beaker, and measure the potential with the *Electrode system.* From the measured potential and the Standard re-

Excipient – XRD method reference

Search Advanced Search

A. X-RAY DIFFRACTION (941)

Sample A: Add 2 g in small portions to 100 mL of water, with intense agitation. Allow to stand for 12 h to ensure complete hydration. Place 2 mL of the mixture so obtained on a suitable glass slide, and allow to air-dry at room temperature to produce an oriented film. Place the slide in a vacuum desiccator over a free surface of ethylene glycol. Evacuate the desiccator, and close the stopcock so that the ethylene glycol saturates the desiccator chamber. Allow to stand for 12 h.

Sample B: Prepare a random powder specimen of Bentonite.

Analysis

Samples: Sample A and Sample B

Record the X-ray diffraction pattern of the samples, and determine the d values.

Acceptance criteria: The largest peak in the pattern of Sample A corresponds to a d value between 15.0 and 17.2 Å. The major peak in the region between 1.48 and 1.54 Å from the pattern of Sample B is between 1.492 and 1.504 Å.

Reference Tables USP Monographs Dietary Supplements NF Monographs Glossary Contact USP USP Home Page Technical Support Site Email Software Tech Support	 Sample A: Add 2 g in small portions to 100 mL of water, with intense agitation. Allow to stand for 12 h to ensure complete hydration. Place 2 mL of the mixture so obtained on a suitable glass slide, and allow to air-dry at room temperature to produce an oriented film. Place the slide in a vacuum desiccator over a free surface of ethylene glycol. Evacuate the desiccator, and close the stopcock so that the ethylene glycol saturates the desiccator chamber. Allow to stand for 12 h. Sample B: Prepare a random powder specimen of Bentonite. Analysis Samples: Sample A and Sample B Record the X-ray diffraction pattern of the samples, and determine the d values. Acceptance criteria: The largest peak in the pattern of Sample A corresponds to a d value between 15.0 and 17.2 Å. The major peak in the region between 1.48 and 1.54 Å from the pattern of Sample B is between 1.492 and 1.504 Å.
---	--

PDF-4/Organics database - pharmaceutical

PDF-4/Organics database - pharmaceutical

eferences C	Dpen PDf	Card Simulated Profile		(Results: 10,780 of 501,	964 ICDD	Defaults 🗸]
PDF #	QM	Chemical Formula	Compound Name	D1 (Å)	D2 (Å)	03 (Å)	SYS	1
05-006-4528	01	C15 H24 O	2,6-Di-tert-butyl-p-cresol	6.171470	5.088900	4.299360	0 ^	
05-006-4530	S	C22 H24 CI Co N8 O7	bis(N-(2-(4-ImidazolyI)ethyI)pyridine	6.717000	11.634200	4.105130	н	
05-006-4531	01	C15 H38 N4 O8.5	O-α-D-2,6-Diamino-6-methyl-2,3,4,6	7.099220	4.506350	7.867410	0	
05-006-4532	01	C18 H22 O2	Estrone	4.314430	6.750170	4.396490	M	
05-006-4537	S	C17 H16 CI N3 O	{2-Chloro-11-(1-piperazinyl)dibenz(4.360060	3.956840	6.497700	0	
05-006-4539) S	C6 H12 O6	a-D-Mannopy ranose	5.030970	4.535910	4.046640	0	
05-006-4559	S	C20 H16 N4 O2 S	N-methyl-N-(3-{3-(2thienylcarbonyl)	5.199250	3.511100	3.385450	M	
05-006-4621	S	C11 H10 CI F O2	2-Chloro-1-(6-fluoro-3,4-dihydro-2H	3.380140	3.397810	5.290960	M	
05-006-4624	🔴 В	C21 H34 N3 O6	((1-{(1-(tert-butoxy carbony I)py rrolidi	10.230000	4.504810	4.491540	0	
05-006-4625	B	C23 H38 N3 O6	{(1-{(1-(tert-butoxy carbonyl)py rrolidi	5.097400	4.565470	4.584290	0	
05-006-4719) S	C27 H35 N2 O7 · CI · C2 H3 N	((2S)-1-((3S)-3-carboxy-6,7-dimeth	7.531660	8.969120	5.201270	M	
05-006-4748	🔴 В	C4 H12 N O3 · C22 H25 O4 · H2 O	7-Phenyl-7-(2,4,5-trimethyl-3,6-diox	23.442200	3.911940	7.348480	M	
05-006-4765	🔴 В	C48 H58 O4 · C2 H3 N	1,4-bis(4-estren-17a-ethynyl-18a-h	5.956240	6.639670	6.022630	M	
05-006-4766	🔴 В	C48 H56 F2 O4 · C2 H3 N	1,4-bis(18a-Homo-17β-hydroxy-17α	6.003160	3.722570	4.731350	M	
05-006-4767	B	C46 H52 F2 O4	1,4-bis(17β-hydroxy-17α-ethynyl-4	11.982600	12.307300	8.735050	M	
05-006-4768	🔘 S	C7 H8 N4 O2 · C7 H6 O3	theopylline 3-hydroxybenzoic acid c	3.315460	3.360570	3.558200	A	
05-006-4769	🔴 В	C7 H8 N4 O2 · C7 H6 O4	theopylline 2,3-dihydroxybenzoic aci	6.903530	3.308980	7.355580	M	
05-006-4770	🔘 S	C7 H8 N4 O2 · C7 H6 O4	theopylline 2,4-dihydroxybenzoic aci	7.177710	3.187240	3.330770	M	
05-006-4771	01	C7 H9 N4 O2 · C7 H5 O4 · H2 O	theopylline 2,6-dihydroxybenzoic aci	3.279150	7.311410	7.124660	M	
05-006-4772	🔵 S	C7 H8 N4 O2 · C7 H6 O4	theopylline 3,4-dihydroxybenzoic aci	3.187060	5.519520	7.553580	A	
05-006-4773	01	C7 H8 N4 O2 · C7 H6 O4	theopylline 3,5-dihydroxybenzoic aci	3.187780	7.850200	6.236990	A	
05-006-4992	🔴 В	C26 H27 CI5 N2 O Ru S	Dichlorido(n6-p-isopropyltoluene)(1	12.069200	9.410600	11.469600	A	
05-006-4993	🔴 В	C54 H48 Cl3 N4 Ru · F6 P ·2 C H2	Chlorido(n6-p-isopropyltoluene)bis(6.041510	11.834900	5.552620	A	
05-006-4994	S	C16 H13 CI3 N2 O S	1-(2-((2-chlorothiophen-3-vl)methox	3,919640	3.223840	4.908550	M	

PDF-4/Organics database - excipients

USO 9001:2008 QUALITY ASSURED COMPANY CERT.NR. 11409.1

PDF-4/Organics database – excipients

🎙 Results - [Su	ubfile/Su	ubclass (Pharmaceutical/Excipient)]	And [Status (Primary,	Alternate, Delet	ed)]				x
File Edit Fiel	ds Simi	ilarity Index Help							
Yreferences C)pen PDF	Card Simulated Profile			(Results: 2,667 of 501	L,964 CDD	Defaults 、	/
PDF #	QM	Chemical Formula	Compound	Name	D1 (Å)	02 (Â)	53 (Å)	SYS	٦
02-063-1767	S (C10 H14 O	2-IsopropyI-5-methylph	henol	11.168600	4.719940	5.323980	R ′	^
02-063-2175	🔵 S	C4 H4 N O4 S · K	Potassium 6-methyl-1,	2,3-oxathiazin	10.515600	4.656410	3.546590	M	
02-063-2271	🔴 В	C12 H22 O11 · H2 O	alpha-Lactose monohy	drate	4.466030	4.547100	4.651660	M	
02-063-2272	🔵 S	C12 H22 O11 · H2 O	4-O-beta-D-Galactopy	ranosyl-alpha	4.434390	4.527190	4.630340	М	
02-063-2295	01	C6 H8 O6	L-Ascorbic acid		3.176500	2.973560	4.483100	M	
02-063-2296	<mark> </mark>	C6 H8 O6	0.42-Deutero-L-ascort	bic acid	3.176500	2.973560	4.483100	М	
02-063-2297	🔵 S	C6 H8 O6	L-Ascorbic acid		3.176500	2.973560	4.483100	М	
02-063-2345	<mark> </mark>	C5 H10 N O4 · CI	L-Glutamic acid hydrod	chloride	3.878700	3.724620	3.366970	0	
02-063-2619	🥚 В	C4 H4 O4	Maleic acid		3.189610	5.075000	3.971510	М	
02-063-2620	<mark> </mark>	C4 H4 O4	Maleic acid		3.189610	5.050000	3.959500	M	
02-063-2621	🔵 S	C4 H4 O4	Maleic acid		3.176710	5.049000	3.952830	Μ	
02-063-2638	<mark> </mark>	C12 H22 O11 · H2 O	beta-Maltose monohyd	irate	4.463670	6.182130	4.070970	М	
02-063-2639	🔵 S	C12 H22 O11 · H2 O	beta-Maltose monohyd	irate	4.413050	4.050630	6.147350	М	
02-063-2640	<mark> </mark>	C12 H22 O11	alpha-Maltose		4.038320	4.332030	7.000590	0	
02-063-2888	🔵 S	C15 H24 O	2,6-Di-t-butyI-4-methyl	phenol	4.410220	6.010410	8.240430	M	
02-063-2889	<mark> </mark>	C15 H24 O	2,6-Di-t-butyl-4-methyl	phenol	6.171470	7.675430	5.088900	0	
02-063-3451	🔴 В	C4 H10 O4	meso-Erythritol		4.383910	4.529020	6.013110	Т	
02-063-3452	🔴 В	C4 H10 O4	meso-Erythritol		4.526190	4.389470	6.030830	Т	
02-063-3544	🔴 В	C H4 O	Methanol		3.349800	4.807670	3.215000	0	
02-063-4972	01	C2 H3 O2 · Na ·3 (H2 O)	Sodium acetate trihydr	ate	3.039690	7.720300	3.953170	M	
02-063-4973	🌒 S	C2 H3 O2 · Na ·3 (H2 O)	Sodium acetate trihydr	ate	3.002060	7.733770	3.944940	М	
02-063-5052	🔴 В	C5 H9 N O3 S	N-A cetyI-L-cy steine		3.382790	4.231290	4.502990	A	
02 063 6063	<u> </u>	CE HON OB S	N A cetyl L cysteine		3 220170	/ 1531/0	3.843970	^	
Search Descrip	tion:			Calculations:					
[Subfile/Subclas Deleted)]	ss (Pharn	naceutical/Excipient)] And [Status (Prim	ary, Alternate,	Mean:	Media	n:	ESD:		

QUALITY ASSURED COMPANY

PDF-4/Organics database – excipients – data mining

📀 Search																		• 💌
	9	Subfile	•					🛆 En	vironment	🖌 🗸 Stati	us	2	Quality	Mark			Databa	se
Forensic						^	Am	bient		Primar	y	Star			<u>~</u> [ICDD	(00)	
Hydrogen Storage	Materials						Press. (Non-ambient)		Alterna	Alternate Rietveld			ICSD (01)					
- Inorganic							Ten	np. (Non	-ambient)	Delete	d	Good Good	ł		l r	CSD (02)	
Intercalate								ss. & Te	mp. (Non-ambient)			Inde	xed				(03)	
Merck	Merck				Calculated						DE (04)							
Metals & Alloys	Metals & Alloys					Ato	mic Coo	rdinates 🕱		_	 Proti Minin 	nal Accer	otable				ante (05)	
Micro & Mesoporou	IS					~	Baw Diffraction Data			● Blank ✓				Crystal L	Data (05)			
Periodic Table		IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA	
Chemistry		¹ u									•						2 Ho	
Crustallography	1	1.008		mg							\$						4.003	
Crystallography	2	³ Li	⁴ Be		يديم والو			0.45		Operator:		5 в	°C	7 N	°o	۶F	¹⁰ Ne	
Modulated	2	6.941	9.012		Add		Not) An	u our outer	operator:		10.811	12.01	14.007	15.999	18.998	20.180	
Periodic Table Chemistry Crystallography Modulated	1	IA 1.008 3 Li 6.941 11	IIA 4 Be 9.012	IIIB Mg	IVB	VB	VIB	VIIB	VIIIB	IB Operator:	IIB 🌱	5 B 10.811	IVA 6 C 12.01	VA 7 N 14.007	VIA 8 0 15.999	VIIA 9 F 18.998	VIIIA ² He 4.003 ¹⁰ Ne 20.180	

[Subfile/Subclass (Pharmaceutical/Excipient) And Subfile (Inorganic)] And [Mg] And [Status (Primary, Alternate)]

PDF-4/Organics database – excipients – data mining

File Edit Fiel	ds Sim	ilarity Index Help							
S	E	<u>∽</u> ~			(Results:	ICDD	Defaults	~
references 0	Open PDF	Card Simulated Profile				63 of 501,9	964		
PDF #	QM	Chemical Formula	Compound N	Name	D1 (Å)	D2 (⁸)	D3 (Å)	SYS	
00-004-0829	🔵 S	Mg O	Magnesium Oxide		2.106000	1.489000	0.941900	С	
00-011-0273	01	Mg Si O3	Magnesium Silicate		3.170000	2.908000	2.551000	0	
00-013-0558	01	Mg3 Si4 O10 (O H)2	Magnesium Silicate Hy	droxide	9.340000	3.116000	4.660000	М	
00-013-0595	01	Mg4 Si6 O15 (O H)2 ·6 H2 O	Magnesium Silicate Hy	droxide Hydr	12.100000	2.560000	4.310000	0	
00-019-0770	01	Mg3 Si4 O10 (O H)2	Magnesium Silicate Hy	droxide	9.350000	1.529000	4.590000	М	1
00-026-1226	01	Mg4 Si6 O15 (O H)2 ·6 H2 O	Magnesium Silicate Hy	droxide Hydr	3.360000	3.760000	3.200000	0	
00-029-1492	0	Mg4 Si6 O15 (O H)2 ·6 H2 O	Magnesium Silicate Hy	droxide Hydr	12.800000	2.580000	4.410000	0	
00-029-1493	🔴 В	Mg3 Si4 O10 (O H)2	Magnesium Silicate Hy	droxide	9.310000	3.120000	4.550000	М	
00-030-0794	0	Mg O	Magnesium Oxide		3.050000	2.040000	1.174000	С	1
00-041-0486	0 (Mg Si O3 · H2 O	Magnesium Silicate Hy	drate	3.000000	1.610000	1.496000	х	1
00-045-0946	🔘 S	Mg O	Magnesium Oxide		2.105640	1.489050	0.941716	С	1
00-058-2010	🔴 В	Na0.3 (AI, Mg)2 Si4 O10 (OH)2 ·	Sodium Aluminum Magr	nesium Silicat	12.522800	3.118450	4.452390	0	1
00-058-2011	🔴 В	Na0.3 (AI, Mg)2 Si4 O10 (OH)2 ·	Sodium Aluminum Magr	nesium Silicat	12.803800	3.164290	6.232400	0	1
00-059-0649	01	(AI11.1 Fe1.9 O4 (O H)24)0.152 (Magnesium Iron Alumin	um Silicate O	18.683000	4.568000	1.528000	М	1
00-059-0650	🥥 В	(Al8.6 Fe4.4 O4 (O H)24 (H2 O)	Magnesium Iron Alumin	num Silicate O	18.248000	4.563000	1.528000	М	
00-059-0651	01	((Al2 O3)0.84 (Fe2 O3)0.14) (Si	Magnesium Iron Alumin	um Silicate O	18.156000	4.567000	1.528000	М	
00-059-0652	🔴 В	((Al2 O3)0.88 (Fe2 O3)0.54) (Si	Magnesium Iron Alumin	um Silicate O	18.249000	4.581000	1.529000	М]
01-070-9183	н	Mg O	Magnesium Oxide		2.117800	1.497510	1.222710	С	1
01-071-1176	🔵 S	Mg O	Magnesium Oxide		2.108500	1.490930	0.942950	С	1
01-071-3631	🔵 S	Mg O	Magnesium Oxide		2.107000	1.489870	0.942279	С	1
01-071-3777	01	Mg O	Magnesium Oxide		2.105950	1.489130	2.431740	С	1
01-071-4938	01	Mg O	Magnesium Oxide		2.108000	1.490580	2.434110	С	
01-071-6452	01	Mg O	Magnesium Oxide		2.125300	1.502810	1.227040	С	~
Search Descrip	tion:			Calculations:					
[Subfile/Subclas [Status (Primar	ss (Pharn	naceutical/Excipient) And Subfile (Inorga ate)]	nic)] And [Mg] And	Mean:	Mediar	n:	ESD:		

PDF entries with atomic coordinates

XRD pattern of Allegra®, antihistamine

Can I just model the polymer amorphous component as a single peak?

Excipient polymers PDF raw data patterns (PD3)

XRD analysis of Suprax[®]

Suprax (API: Cefixime 3H₂O) is an antibiotic used for the treatment bacterial infections

CERT.NR. 11409.1

Ö

-	Import (1D) Import (2D) Open Sess	p sion Save Session	Image: Weight of the second	Matches Filter: [Any Name Matches (0 of 1)	Contains Fragments	'cefixime'] And [Status (F	Primary, Alternate)]	
	GOM 🤚 PDF # QN	M Status Coo	rds I/Ic Compound Name	Mineral Name	Phase	Chemical For	mula	D1 (Å) D2 (Å	.) D3 (Â)
-	<		Experiment		Diffrac	tion Patterns III Lines	s (40 of 42) 💽 I	Estimated Weight %	
	Search Lines: 7.628866 Å 🗸		D1 Range: 7.530 Å - 7.727 Å Preferences	Rotation: All					
	Radiation: X-ray		Use Residual Intensities		10,000				
	Wavelength: Cu Ko1 1.54056 Å		2nd Pass Filter		8 000				
	Search Method: Hanawalt		Weight d-Spacings						
	Search Window: 0.15°		Lowest Allowable GOM: 2000		A: 6,000	D			
	Match Window: 0.15°				e 4000				
			– Phases (2) 🌟 📣 📗 —————			,			
	🎯 # 💅 PDF #	QM	Compound Name Matched I Ratio	I % I/Ic Est Wt %	2,000				
	1 ✓ 04-013-3344	S Hydrogen	Calcium Phosphate Hydr 23 of 36 0.3	320 71.299 1.42 100°	%	Mille	_Mon	Juldan Man	man
	2 7 00-055-1136	O Cerixime t	nnydrate 21 of 28 0.1	29 28.701	■ `				
	PDF #	QM	Compound Na	me I	Matched	I Ratio	I %	I/Ic	
			Hydrogen Calcium Phoer	shate Hydr	23 of 36	0.320	71.299	1.42	
	04-013-3344	🔍 S	ny urogen euroium moa	mate riyar					40 45

CERT.NR. 11409.1

CERT.NR 11409.1

PDF Data Mining

🚷 Search				
Subfile ▼ Subfile ▼	Constraint Environment Ambient Press. (Non-ambient) Temp. (Non-ambient) Press. & Temp. (Non-ambient) Atomic Coordinates Raw Diffraction Data	 Status Primary Alternate Deleted 	♀ Quality Mark ● Star ∧ ● Rietveld ● Good Indexed ● Calculated ● Prototyping ● Blank ✓	Database Database DicDD (00) CSD (01) CSD (02) NIST (03) LPF (04) CDD Crystal Data (05)
Periodic Table	Radiation: (i) X-ray/Elec	tron () CW Neutro	n	1
Formula/Name Strong Line (Å) ▼ 3.52 × 0.05 × Classifications ✓ D1 □ D2 □ D3		Long Line (Å) ▼ — Value ESD	.3	
Crystallography I/I-corunoum				
Modulated Value ESD				
Diffraction				
Physical Properties Smith-Snyder Figure of Merit V				
Reference Value ESD				
Comments Temperature of Data Collection (K) ▼ Value ESD				
Search Reset Tab Reset All Help N	lumeric Input ▼ Global Operator ▼	[Subfile/Subclass (Pha And [Status (Primary,	armaceutical/Excipient)] And [S , Alternate)]	trong Line = 3.52(0.05) Å] ^

PDF Data Mining

e Edit Fields	Similari	ty Index Help			
references Open I	PDF Card	d Simulated Profile	Results: 105 of 384,613	ICDD Defaults	~
PDF #	QM	Chemical Formula 👚	Compound Name	D1 (Å)	D2 (Å)
00-021-1272	S	Ti O2	Titanium Oxide	3.520000	1.89200 ^
00-029-1360	S	Ti O2	Titanium Oxide	3.512000	2.90000
00-035-0088	0 I	Ti O2	Titanium Oxide	3.560000	3.11000
🚖 00-046-1237	🔵 R	Ti O2	Titanium Oxide	3.568540	5.82368
00-046-1238	🔵 R	Ti O2	Titanium Oxide	3.568640	6.23732
00-064-0863	🔵 S	Ti O2	Titanium oxide	3.516160	1.89268
01-070-6826	🔵 S	Ti O2	Titanium Oxide	3.501410	1.88550
01-070-7348	🔵 S	Ti O2	Titanium Oxide	3.515390	1.89200
01-071-1166	🔵 S	Ti O2	Titanium Oxide	3.516290	1.89210
01-071-1167	🔵 S	Ti O2	Titanium Oxide	3.521430	1.89460
<pre>01.071.1120 </pre>	^ •	T: 02	Titanium Ovida	2 530000	1 000EE *
Search Description:			Calculations:		
Subfile/Subclass (P \lternate)]	harmace	eutical/Excipient)] And [Strong Line = 3.52(0.05) Å] And [Status (Primary,	Mean: Median:	ESD:	

CERT.NR. 11409.1

CERT.NR. 11409.1

XRD analysis of Zocor[®] generic

Zocor generic (API: Simvastatin) is a statin used to lower blood cholesterol

Phase identification – Zocor generic core

Phase identification – Zocor[®] generic

QUALITY ASSURED COMPANY

Phase identification – Zocor[®] generic

	😋 Sleve-	- ZW10_0-6 0-01 0-250 5 5	i0_20.xml								x	
	File Edi	Matches Phases Help										
	Import (1	D) Import (2D) Open Session	n Save Session P	Image: Second system Image: Se	: Phase							
					Matches							
	GOM •	PDF# QM S	Status Coords	I/Ic Compound Name	Mineral Name	Chen	nical Formula	D1 (Å)	D2 (Å)	D3 (Å)	D.	
	< 	hange Filter Primary F	Patterns			_					>	
				Experiment					dura du M			
	Search	.ines: 4.554315 Å ∨	D1 Ra	ange: 4.513 Å - 4.596 Å Rotatio	n: All	iffraction Patterns	Lines (43 of 4	4) 🖤 Estimate	d Weight %			
				Preferences	1	4,000					^	
	Radiatio	n: X-ray	🗹 U:	e Residual Intensities	1	2,000					-	
	Wavele	ngth: Cu Ka1 1.54056 Å	2r	nd Pass Filter	1	0.000						
	Search	Method: Hanawalt	∨ ₩	eight d-Spacings		0,000						
	Search	Window: 0.18°	Lowe	st Allowable GOM; 2000	ensi	8,000						
	Match	vindow: 0.18°			트	6,000						
			Phases	(3) 🛒 🗣 🗾		4,000						
	🧐 #	😻 PDF # QM	Com	oound Name I Ratio I %	I/Ic Est Wt %	2,000					-	
		✓ 00-030-1716 <u>●</u> I	Lactose hydrate	0.973 90.463	1.55 85		Man الله	- Whiten	1 minut	mille		
🎯 #	1	PDF #	QM	Compound Na	ame :	I Ratio	I %	I/Ic	Es. Wt 9	%		
1	1	00-030-1716	01	Lactose hydrate		0.973	90.463	1.55		85 m	v	
2	 ✓ 	02-084-3004	🔴 В	(1S,3R,7S,8S,8aR)-3,7-	Dimethyl-8-(0.056	5.2 <mark>3</mark> 4	0.53		14 38 4	40	
3	1	00-021-1272	🔵 S	Titanium Oxide		0.046	4.303	*5.0		1	×	90
D.											QUALI	LITY ASS

CERT.NR. 11409.1

RIR method for multiphase sample

$$\begin{split} \sum_{j=1}^{n} X_{j} &= 1 \\ X_{\alpha} &= \frac{I_{(hkl)\alpha}}{RIR_{\alpha} I_{(hkl)\alpha}^{rel}} \left[\frac{1}{\sum_{j=1}^{n} \left(I_{(hkl)'j} / RIR_{j} I_{(hkl)'j}^{rel} \right)} \right] \end{split}$$

Phase identification – Zocor[®] generic

<u></u>	Save Session Print Preferences Accept Phase Remove I	Last Phase Matches			
		Macules	Chaminal Formula	D1 (8) D2 (8)	D2(8) D
	Itus Coords 1/10 Compound Name	Mineral Name	Chemical Formula	D1 (A) D2 (A)	U3 (A) U
<					>
Primary Pai	tterns				
	Experiment		Diffraction Battorne III Lines (43 of 4)	Estimated Weight %	
Search Lines: 4.554315 Å 🗸	D1 Range: 4.513 Å - 4.596 Å Rot	ation: All			
	Preferences		nium Oxide		
Radiation: X-ray	Use Residual Intensities	- 00	-021-1272:		
Wavelength: Cu Ko1 1.54056 Å	2nd Pass Filter	(15	.3R.75.85.		
Search Method: Hanawalt	Weight d-Spacings		aR)-3,7-		
Search Window: 0.18°	Lowest Allowable GOM: 2000		2R,4R)-4		
Match Window: 0,18°		hyd	roxy-6-oxo- 3,4,5,6-		
	Dharras (2) 📥 🏔 🕒	tetr	ahydro-2H-		
	Phases (3) T 🖤 📃	-1.3	2,3,7,8,8a-		
	Compound Name I Batio I 94	I/Ic Est Wt %	hydronapht en-1-yl 2,2-		
😵 # 😻 PDF # QM	Compound Name 1 Ratio 1 76		athylhutana		
	Lactose hydrate 0.973 90.463	1.55 85 dim	02.084		
	Composition Name I Rado I % Lactose hydrate 0.973 90.463 (IS,SR,FS,8S,83R)-3,7-Dimethyl-8-(0.056 5.234	1.55 85 0.53 14	- 02-084 004: 14%		
# ♥ PDF # QM 1 ✓ 00-030-1716 ● I 2 ✓ 02-084-3004 ● B 3 ✓ 00-021-1272 ● S	Compositive Value T Rado T % Lactose hydrate 0.973 90.463 (15,3R,7S,8S,8aR)-3,7-Dimethyl-8-(0.056 5.234 Titanium Oxide 0.046 4.303	1.55 85 0.53 14 *5.0 1	- 02-084 J004: 14%		
	Composition value T Rado T % Lactose hydrate 0.973 90.463 (15,3R,7S,8S,8aR)-3,7-Dimethyl-8-(0.056 5.234 Titanium Oxide 0.046 4.303	1.55 85 0.53 14 5 *5.0 1	- 02-084 1004: 14%		

QUALITY ASSURED COMPANY

CERT.NR. 11409.1

Atomic coordinates in the PDF-4 databases

Phase identification – Zocor[®] generic

Phase identification – Zocor[®] generic

PDF-4 SIEVE+ RIR		WPF RIETVELD	
α lactose hydrate	85 wt.%	α lactose hydrate	84.1(7) wt.%
Simvastatin $C_{25}H_{38}O_5$	14 wt%	Simvastatin C ₂₅ H ₃₈ O ₅	13.8(4) wt%
Anatase TiO ₂	1 wt.%	Anatase TiO ₂	2.1(3) wt.%

The RIR method works well when samples are randomly oriented and I/Ic values are known

Keys to successful excipient phase analysis

- •Research the pharmaceutical understand the drug and formulary being evaluated
- •Sample preparation particle size, sample thickness, specimen displacement
- •Instrument alignment run calibration standards to confirm proper operation
- •Data collection use the proper count time for good counting statistics
- •Reference database must have pharmaceutical and excipient subfiles, editorially reviewed

XRD analysis of Allegra®

Allegra (API: Fexofenadine HCl) is an antihistamine used for the treatment of hay fever and related allergy symptoms.

Phase identification – Allegra[®] core

QUALITY ASSURED COMPANY

Phase identification – Allegra[®] shell

USO 9001:2008 QUALITY ASSURED COMPANY

> CERT.NR 11409.1

