ICDD Powder Diffraction File[®] Coverage of Polymers Used in Pharmaceutical and Biomedical Applications

T. BLANTON, S. GATES-RECTOR, T. FAWCETT, ICDD S. MISTURE, ALFRED UNIVERSITY

QUALITY ASSURED COMPANY

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

What is a polymer?

The word polymer is derived from the Greek words *polus*, meaning many, and *meros*, meaning parts.

A long-chained molecule that is composed of individual units, called monomers.

A compound typically of high molecular weight derived either by the **addition** of many smaller molecules, such as polyethylene, or by the **condensation** of many smaller molecules with the elimination of water, alcohol, or the like, such as nylon.

Polymers can be natural or synthetic

There are inorganic polymer and coordination polymer materials, we will focus on carbon or silicone based polymers

Polymer analysis using XRD

Many techniques are used for polymer characterization

• IR, NMR, GC/MS, etc.

Why use XRD?

- Polymers can have amorphous and crystalline regions
- Crystallite size is small and measurable by XRD
- Polymers are often used as the base component in pharmaceutical and biomedical composite materials

Bragg Brentano Reflection Mode XRD Patterns - Effect of Processing on Polypropylene

2-D transmission XRD patterns - Effect of processing and sample orientation on polypropylene XRD patterns

Pharmaceuticals

Biomedical devices

Powder Diffraction File PDF Polymer Entry – PEEK Polymer

E	🔍 (C19 H12 O3)n - 00-066-1662																											
	File Edit Plots Window Help																											
	Image: Save Print Im																											
	Cu Ko1 1.54056 Â 🗸 🔄 Simulated Profile (Exp-based)																											
Fixed Slit Intensity Raw Diffraction Data (PD3) 900 800 800																												
	20 (°)	d (Å)	I	h	k	1	*			700																		
	17.6800	5.012370	120	0	0	2		^	ł	≧ 600																		
	18.7370	4.731930	999	1	1	0				g 500																		
	20.7560	4.275970	328	1	1	1			1	≡ 400																		
	20.9460	4.237610	305	1	0	2				300																		
	22.5570	3.938480	388	2	0	0				200																		
	25.8500	3.443740	47	1	1	2				100																		
	28.5830	3.120370	138	2	1	1				0	4		20	22	24	26	20		22	1.1		20	20	40	40		40	
	30.1260	2.963970	44	0	2	0					10	8	20	22	24	20	28	30	32	34 (°)	+ .	30	38	40	42	44	40	48
32.6890 2.737200 31 2 1 2								28(7)																				
PDF Status: Primary QM:						QM:	Minimal Acceptable Pressure/Temperature: Ambient																					
	Experimental		Phase:																									
	Physical	Cherr	nical Form ural Form	iula: (iula:	(C19 H1)	2 O3)n																						
	Crystal	Empir	rical Form	ula: (C19 H12	03																						
	Optical		Weight	: %: (C79.16 H	14.20 O	16.65																					
Atomic %: C55.88 H35.29 O8.82																					_							
Classifications Compound Name: Polyether ether ketone Mineral Name:																												
	Cross-reference	s Co	mmon Na	me:	poly (ary l	-ether-l	(etone)	, PE	EK																			
	References		c	AS: 2	29658-26-2																							
	Comments	Last Modif	Entry Da ication Da	ate: (ate:)9/01/20	16																						
		Last N	Last Modifications:																									

Powder Diffraction File PDF Polymer Entry – PEEK Polymer

PD3 Raw Data Patterns in the Powder Diffraction File – PEEK Polymer

Orthorhombic Pbcn a=7.831Å b=5.891Å c=9.958Å

PD3 Raw Data Patterns in the Powder Diffraction File – PEEK Polymer

Stick vs. Simulated vs. PD3 (PVOH – tablet packaging)

Polymer entries in PDF 2015

🖉 Results -	[Subfile	e (Polymer)] And [Status (Pri	mary, Alternate, D	eleted)]					×
File Edit Fie	elds Simi	larity Index Help							
V Preferences	Open PDF	Card Simulated Profile		1,3	Results: 325 of 365,877	ICDD Defau	ılts		*
PDF #	QM	Chemical Formula	Compound N	Name	D1 (Å)	D2 (Å)	D3 (Å)	SYS	
00-003-0193	0	(C4 H5 CI)x	Poly chloroprene		4.450000	4.070000	3.360000	0	~
00-003-0203	в 🔴 В	(C12 H24 O12 · H CI O4)x	Cellulose perchloric ac	id	4.420000	4.650000	3.560000	М	
00-003-0215	5 🔴 B	C12 H22 O11	Cellobiose		4.370000	8.380000	4.740000	М	
00-003-0226	6 🔴 B	(C6 H10 O5)x	Cellulose		4.300000	5.140000	7.550000	М	
00-003-0254	0 🔘	(C H2)x	Paraffin wax		4.150000	3.730000	3.880000	Х	
00-003-0259	0 0	(C H2)x	Paraffin wax		4.130000	3.730000	3.480000	Х	
00-003-0289	0 0	(C6 H12 O6)x	Native cellulose		3.890000	5.940000	2.570000	М	
00-004-0419	0 0	(C H2 O)x	Paraformaldehyde		3.760000	2.590000	1.870000	Х	
00-007-0506	i 🔵 O	C30 H57 N5 O6	ε-Polyaminocaproic ac	id	3.690000	4.470000	3.600000	Х	
00-007-0511	0	C24 H46 N4 O5	ε-Polyaminocaproic ac	id	4.430000	3.690000	4.470000	Х	
00-008-0689	0	C57 H108 O6	β-2-OleyI-1,3-distearyI	trigly cerol	4.600000	5.420000	5.030000	М	
00-009-0853	i 🔴 O	(C4 H6)n	1,4-cis-Polybutadiene		3.980000	4.750000	4.070000	Х	
00-011-0834	0 🌒	(C2 H4)n	β-Polyethylene		4.100000	3.600000	2.490000	Х	
00-012-0876	i 🔵 O	(C2 H3 CI O)n	Polymonochloroacetalo	lehyde	7.760000	3.850000	3.450000	Х	
00-012-0877	′ 🔵 O	(C4 H8 O)n	Buty raldehy de polymer	•	12.000000	9.000000	4.800000	Х	
00-012-0878	i 🔵 O	(C4 H8 O)n	Polyisobutyraldehyde		9.300000	7.900000	4.600000	Х	
00-012-0879	0	(C2 H2 Cl2 O)n	Poly dichloroacetaldehy	de	8.320000	4.000000	3.130000	Х	
00-012-0880	0 0	(C7 H14 O)n	Polyheptylaldehyde		13.100000	11.500000	4.180000	Х	
00-012-0896	i 🥥 B	(C3 H6 O)n	d,I-Poly (propylene oxid	e)	4.210000	5.180000	2.072000	0	
00-013-0675	i 🕘 I	(C H2)n	Paraffin		4.180000	3.740000	2.250000	М	
00-013-0684	01	(C8 H8)n	a-Poly-p-xylylene		5.380000	3.970000	5.060000	М	
00-013-0686	6 🔴 В	(C2 H4 O)n	Metaldehyde		7.500000	3.880000	3.350000	Т	
00-013-0743	0 🕘 🗧	C5 H9 N O2	Poly-I-proline		5.800000	4.900000	3.650000	х	
00-013-0744	0 0	(C5 H9 N O2)n	Poly-I-proline		8 400000	4 940000	3 220000	x	×
Search Descri	ption:			Calculations:					
[Subfile (Polyr	mer)] And	[Status (Primary, Alternate, Deleted)]		Mean:	Media	n:	ESD:		

PD3 polymer entries in PDF 2015

eferences	Open PDF	Card Simulated Profile	PD3 raw data	Results: 125 of 365,877	ICDD Defau	ilts		*
PDF #	QM	Chemical Formula	Compound Name	D1 (Å)	D2 (Å)	D3 (Å)	SYS	\square
0-061-1416	• в	(C3 H6)n	a-Polypropylene	6,244550	5,226510	4,189310	M	~
0-062-0923	• R	C45 H86 O6	6-1.2.3-tris TetradecanovI dv cerol	4.589920	4.549930	3.684620	A	
0-062-0924	● R	C57 H110 O6	β-1,2,3-Trioctadecanoyl-glycerol	4.582690	4.556430	3.832850	A	
0-062-1286	• R	(C6 H10 O2)n	Poly-ε-caprolactone	4.140580	3.735750	4.026870	0	
0-062-1287	• R	C2.12 H4.12 O0.12	Ethylene vinyl acetate	4.132970	3.747230	2.477160	0	
0-062-1288	● M	C2.22 H4.22 O0.22	Ethylene vinyl acetate	4.449160	2.217140	14.018100	х	1
0-062-1289	● M	C2.36 H4.36 O0.36	Ethylene vinyl acetate	4.564780	16.413000	2.229220	х	1
0-062-1290	● M	(C8.45 H14.9 O5)n	Methyl cellulose, amorphous	9.814620	4.536000	3.364680	х	1
0-062-1291	01	(C8.45 H14.9 O5)n	Methyl cellulose	10.369800	4.464680	4.107080	0	1
0-062-1292	🔴 В	(C22 H10 N2 O5)n	Kapton	6.062230	4.073580	5.674000	0	
0-062-1293	🔴 В	(C22 H10 N2 O5)n	Kapton	16.322000	6.074650	5.443550	0	1
0-062-1701	🔵 G	(C6 H7 O2 (O H)z · (C2 H3 O2)x	Cellulose acetate butyrate	13.450500	4.414020		х	1
0-062-1702	🔵 G	(C6 H7 O2 (O H)z · (C2 H3 O2)x	Cellulose acetate buty rate	13.268800	4.506810		х	
0-062-1703	● M	(C6 H7 O2 (O H)z · (C2 H3 O2)x	Cellulose acetate butyrate	13.417800	4.435870	4.328790	х	1
0-062-1704	9 M	(C6 H7 O2 (O H)z · (C2 H3 O2)x	Cellulose actetate proprionate	11.570400	4.185460	7.787560	х	1
0-062-1705	● M	(C4 H8)n	Poly (butene-1)	8.845650	4.356160	4.466800	х	1
0-062-1706	● M	(O C H2)n	Poly (oxy methylene)	3.930910	2.630020	1.899100	х	1
0-062-1707	💛 M	(O C5 H6 Cl4)n	Poly (3,3-bis(chloromethyl)oxetane)	5.888960	4.036160	3.997390	х	1
0-062-1708	<u>Ο</u> Μ	(C4 H8 O)n	Poly (tetrahy drofuran)	4.492410	4.561160	3.688190	х	1
0-062-1709	<u> </u>	(C H2 C H ((C6 H4) C H3))n	Poly(o-vinyl toluene)	5.933620	5.760570	6.142820	х	1
0-062-1710	0 M	(C H2 C Cl2)n	Poly (vinylidene chloride)	5.643990	13.657800	10.203600	х	1
0-062-1711	0 M	(C H2 C H (C6 H5))n (C H2 C H	Poly(styrene-acrylic acid)	4.785400	8.293680	9.837960	х	1
0 062 1712	A G	(C4 H8 O2)n . (C2 H4 O2)n	Cellulose acetate buturate	11.097800	4 970540	10.695400	Y	Y

ICDD				
nharmacoutical	Polymer	Mol. Formula	PDF Entry	PD3
priarmaceutica	poly(acrylic acid), PAA	(C3H4O2)n	N	N
nolymers project	poly(ethylene oxide), PEO	(C2H4O)n	Y	N
porymers project	poly(ethylene glycol), PEG	(C2H4O)n	Y	N
	poly(vinyl pyrrolidone), PVP	(C6H9NO)n	Ν	N
	poly(vinyl alcohol), PVOH, PVA	(C2H4O)n	Y	Y
	polyacrylamide, PAM	(C3H5NO)n	Ν	N
	poly(N-isopropylacrylamide)	(C6H11NO)n	Ν	N
	cellulose	(C6H10O5)n	Υ	Y
	methyl cellulose	(C6H7O5R1, 2, 3)n R=CH3	Y	Y
	ethyl cellulose	((C6H8O5(C2H5)2)n	Ν	N
	carboxymethyl cellulose	(C6H7O5R1, 2, or 3)n R=H or CH2CO2H	Ν	N
	hydroxyethyl cellulose	(C6H7O5R1, 2, or 3)n R=H or CH2CH2OH	Ν	N
	hydroxypropyl cellulose	(C6H7O5R1,2, or 3)n R=H or CH2CH(OH)CH3	Ν	N
	hydroxypropyl methyl cellulose, HPMC	(C6H7O5R1,2, or 3)n R=H or CH3 or CH2CH(OH)CH3	N	N
	cellulose acetate phthalate	(C6H7O5R1,2, or 3)n R=H or CH3CO or C6H4COCOOH	Y	Y
	alginic acid	(C6H8O6)n	Ν	N
	chitosan	(C6H11O4N)n	Y	N
	hyaluronic acid	(C14H21NO11)n	N	N
	pectinic acid	(C13H14O13)n	N	N
	poly(lactide-co-glycolic acid, PLGA)	(C3H4O2)m(C2H2O2)n	Ν	N
	starch	(C6H10O5)n	Υ	N
	sodium starch glycolate	(C2H4O3Na)n	N	N
	dextran	H(C6H10O5)nOH	Y	Y
	xanthum Gum	C35H49O29 (monomer)	N	Ν
	gelatin	(C35H55N12O12)n	Y QUALITY A	SSURED COMPANY

ICDD biomedical polymers

Polymer	Mol. Formula	PDF Entry PD3
polyurethane, PU	(R-NHCO2)n	Y N
silicone	(OSiR2)n	Y N
polycarbonate, PC	(ROCO2)n	Y Y
polychloroprene	(C4H5Cl)n	Y N
polyisobutylene, PIB	(CH2C(CH3)2)n	Y N
polycyanoacrylate	(C5H5O2N)n	N N
poly(vinyl acetate), PVAc	(C4H6O2)n	N N
polystyrene, PS atactic	(C8H8)n	Y Y
polystyrene, PS isotactic	(C8H8)n	Y N
polypropylene, PP	(C3H6)n	Y Y
poly(vinyl chloride), PVC	(C2H3Cl)n	Y Y
polyethylene	(C2H4)n	Y Y
poly (methyl methacrylate)	(C5H8O2)n	Y N
poly(hydroxyethyl methacrylate)	(C6H10O3)n	N N
Ethylene vinyl acetate, EVA	(C2H4)m(CC4H6O2)n	Y Y
poly(ethylene terephthalate, PET	(C10H8O4)n	Y Y
polyether ether ketone	(OC6H4OC6H4COC6H4)n	N N

2016 PDF-4 new polymer entries (PHR, BIO subfiles)

PDFID	Name	Chemical Formula	Common Name
00-66-1656	Ethylene vinyl alcohol	(C H2 C H2)n (C H2 C H O H)n	Clarene
00-66-1657	Nylon 11	(N H (C H2)10 C O)n	Rilsan
00-66-1658	Polysulfone	(C6 H4 C (C H3)2 C6 H4 O C6 H4 S O2 C6 H4 O)n	Udel
00-66-1659	Ethyl cellulose	(C6 H8 O5 (C2 H5)2)n	Ethocel 45
00-66-1660	Ethyl cellulose	(C6 H8 O5 (C2 H5)2)n	Ethocel 100
00-66-1661	Polyether ether ketone	(C19 H12 O3)n	PEEK - Amor
00-66-1662	Polyether ether ketone	(C19 H12 O3)n	PEEK - Crys
00-66-1663	Hydroxypropyl cellulose	(C36 H70 O19)n	Methocal K15M
00-66-1666	Acetal	(C H2 O)n	Delrin
00-66-1667	Polystyrene, isotactic	((C6 H5) C H C H2)n	i-PS
00-66-1668	Polyethoxazoline	(N (C O C H2 C H3) C H2 C H2)n	PEOx
00-66-1669	Polyarylate	(C O (C6 H4) C O2 (C6 H4) C (C H3)2 (C6 H4) O)n	Ardel

Phase ID – Ag based antimicrobial hospital gown

Ag₂SO₄ compounded in polypropylene was analyzed for phase composition. Using PDF-4 tools, phases were identified. Phases present: α-polypropylene (base polymer), Ag₂SO₄ (antimicrobial agent), Ag⁰ (Ag₂SO₄ reduced during compounding), and montmorillonite (clay for improving polymer physical properties)

Do you need multiple Entries in the PDF Database for a polymer?

Polymer diffraction pattern: sample orientation matters

Strain crystallized PET

Quantitative Phase Analysis PET **Composite Film**

Composite used for transdermal patch backing. XRD phase

terephthalate) (PDF 00-061-1413) and TiO_2 -anatase (00-021-

3

Å2.

B.E

÷

 α_2^*

Ш

С

s

 \sim

≣∢

70°

QUALITY ASSURED COMPANY

analysis identified biaxially oriented poly(ethylene

Cellulose

Phase identification – Allegra[®] shell

QUALITY ASSURED COMPANY

Poly Lactic Acid PLA

3d printing polymers, continued

Polyvinyl alcohol

Cellulose triacetate I

Cellulose triacetate II

65

Methyl cellulose

Ethyl cellulose – new entry for 2016

Ethyl cellulose

Indexing/WPF of crystalline "ethyl cellulose" phase

Ethyl cellulose – isothermal anneal studies

Ethyl cellulose – isothermal anneal studies

Summary

- Raw data diffraction patterns generated from analysis of polymer samples are being added to ICDD PDF-4 databases
- Important considerations:
 - Polymer chemistry
 - Polymer processing
 - Sample orientation in diffractometer reflection vs. transmission
 - Sample type (powder, film, fiber)
- Use caution when using a single peak amorphous pattern to define the amorphous phase
- Pay attention to sample prep

