

Mathilde Reinle-Schmitt:: Paul Scherrer Institut1st July 2016: Excelsus Structural Solutions (Swiss) AG

Challenges of absolute quantification of pharmaceuticals by the internal standard methods

Quantitative Phase Analysis by XRPD Workshop, PPXRD 14, Fort Myers, 6th June 2016

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Introduction

- QPA: high degree of accuracy and precision
- Focus on the internal standard method
- Appropriate choices of primary importance

Why an internal standard? Recipe to choose it? Case study

http://chemistry.fas.nyu.edu/object/chem.sif.xdf.gadds.app1

Phase β , μ_{β}

• Mixture

$$I_{(hkl),\beta} = \frac{K_{1,\beta}}{\mu_m} c_\beta$$

• Mixture

known unknown

$$w_{\alpha} = I_{(hkl),\alpha} \frac{\rho_{\alpha} \mu^{*}_{m}}{K_{1,\alpha}}$$

$$w_{\beta} = I_{(hkl),\beta} \frac{\rho_{\beta}\mu^{*}_{m}}{K_{1,\beta}}$$

$$w_{\beta} = I_{(hkl),\beta} \frac{\rho_{\beta}\mu^{*}_{m}}{K_{1,\beta}}$$

• Ratio

• Add the internal standard

• Add the internal standard

• Add the internal standard

$$w_{\alpha}' = \frac{I_{(hkl),\alpha} K_{1,S}}{I_{(hkl),S} K_{1,\alpha}} \cdot \frac{\rho_{\alpha}}{\rho_{S}} w_{S}$$

Calibration constant from ad-hoc mixtures with known w_s and w'_{α} :

$$\frac{K_{1,S}}{K_{1,\alpha}}\frac{\rho_{\alpha}}{\rho_{S}} = \frac{I_{(hkl),S}}{I_{(hkl),\alpha}}\frac{w_{S}}{w_{\alpha}'}$$

• Single peak method

$$w_{\alpha} = I_{(hkl),\alpha} \frac{\frac{\rho_{\alpha}\mu^{*}_{m}}{K_{1,\alpha}}}{K_{1,\alpha}}$$

$$w'_{\alpha} = \frac{I_{(hkl),\alpha} K_{1,S}}{I_{(hkl),S} K_{1,\alpha}} \cdot \frac{\rho_{\alpha}}{\rho_{S}} \cdot w_{S}$$

• Whole pattern method

$$w_{\alpha} = S_{\alpha} \frac{(ZMV)_{\alpha} \mu^*_{m}}{K}$$

$$w_{\alpha}' = \frac{S_{\alpha}(ZMV)_{\alpha}}{S_{S}(ZMV)_{S}} \cdot w_{S}$$

• Absolute scale

- Unknown compounds
- Rietveld: only crystalline phases

 $\sum_{i=1}^{n} w_i = 1$

Without Internal Standard

- Unknown compounds
- Amorphous quantification, Absolute scale

With Internal Standard

Counts

An internal standard for pharmaceuticals

• Example: absolute QPA of the following mixture:

Counts

An internal standard for pharmaceuticals

• Example: absolute QPA of the following mixture:

• Example: absolute QPA of the following mixture:

Weighted 0	.09 wt%	2.38 wt%	77.527 wt%	19.997 wt%	
Refined (Rietvelt) 0	.17 wt%	2.77wt%	76.99 wt%	20.07 wt%	by
Corrected 0.	169 wt%	2.76wt%	76.73 wt%	19.997 wt%	$\frac{20.07}{19.997} =$

⇔ Amorphous=100-0.169-2.76-76.73-19.997=0.34 wt%

Amorphous problem

• Minimum amorphous content • Not negligible

• Amorphous/crystalline ratio, DoC ?

Difference > expected 0.8%

Cline, J. P., Von Dreele, R. B., Winburn, R., Stephens, P. W. & Filliben, J. J. (2011). Acta Cryst. A67, 357-367. Schreyer, M. et al., Journal of applied crystallography, 44, 1, 17 (2011).

■ B_{cryst} ■ C_{cryst}

- Unknown compounds
- Amorphous quantification, Absolute scale
- Direct correction for instrumental effects
- Comparable matrix effects
- Universal
- Internal standard tailored to analyte
- Time consuming powder processing
- Powder samples only
- Destructive sample preparation

• Poor scattering power

- Longer acquisition time
- Improved signal/noise and signal/background ratios

• Low absorption

• Geometry of the experiment?

20

18

Higher symmetry

- 95% of organics crystallize in 5 space groups:
 - $-P2_1/c$ -P1
 - $-P2_{1}2_{1}2_{1}$ $-P2_{1}$ -C2/c...
- Low symmetry

23	3()	T	ne	Sp	ace	e G	roı	лþ	Lis	t P	roj	ect) (Frank
******	P1	F2	第1 名	2:		Pm	u	R.	Cm		P2/m	P2,	/	Vm P2/	
Gimaile	Chancalthise P222	Thomasda 9222,	P2;2	2		ые., s, o, 122, d	та 222	F222	Gerstleyite 1222	FeMa,5, 12;2;2; 12;2;2;	Mathematin Print	na Ciá 2 Pri 22 State	ы, Ац nc2,	palite Ferbe Rcc2	**************************************
Ra2;	Pinc2	Cs,0(8,0 Pmn2,	h La,h Pba2	Post		Alfs 6 Pho2	oderskite Cmm2	NuAg(NO ₁); Cmc2;	Nafe5, Ccc2 D D D D D D D D D D D D D D D D D D D	Ann	nation Gards	Abm2	Ama2	Abc2	
Feld2	s m		²²	ima2	- 	Pnno	Pccm	Pban Pban	Panna	Pnna	Printe Contraction	Pcc2	Pbam	882 388	T
Ponm Collection Collection	Pmmn Pmmn Pmmn Pmmn Pmmn	Pbcn	Pbca P	anno Cre Cre Alla Cre Alla Cre	nn Com	ca Cromi	n Gcom	Crivina Crivina Jahachidatte	Ccco	Framm	rddd A		Ibam	Ibca	loom
P4	P4;	A4, Pintabe	P4,	A WDer,	Mi NbG	P-4	14 14 hj8j	P4/m Bala4Ca,O ₂₁ S	P4,/m	P4/n P0,546	P4;/n	M/m	М./а	P422	Balv
P4;22	P4;2;2 Distobality	P4;22	P4 ₂ 2;	a and a second	P4,22 Nu,5	P4 ₆ 2,2	1422 Examite	(4,22	P4com Batto,	Pilto Haudia	о А то, (мь. N	4,cm 1	P4,0m	P4cc	P4
Pájm: BaGe,Py	P4,bc	F4mm	IAcm	Ajmd i Ajmd i Alpho i Alpho is		2m P (VS.) Cu	42c	P-42;m	P-42,c	P-4m2	P-4c2 ENLE	P-462	P-4o2	KhanTe	3-42 200 200 80(50)
Lanundite P4-/ncm	1-420 ke XII PS	4/mmm FD, (S50 °C) J4/mcm	Paymec	Ma,As ₂ D ₂	P4/00C P +++++ +++++ Bu4/54; H P3	raymon Pr	paphylite Pb P3,	navn P4/1 			24(CN). 1	Majfaj0,6 c	4,////////////////////////////////////	7mac P4,7ma 200 P3-21	
Au P3/21	Indum 632	N _i Cu P3m1	Custo, p P31m	***** ** ***** (_,BA,,)BQ, P3c3	Simpsonite P3	Stillawelline-Co	Shendrikkine Shendrikkine Sam	Muso, IIH, o	4. Kileo P-31m	P-31c	1 11 11 11 11 11 11 11 11 11 11 11 11 1	94,000,50,0 P-3c1) Mascosite 3T R-3m	Berlinite R-3c	*
Guirtz A5	Tincalconite PSi	Fenceoperite PGy	Galeite	P51	0, IA	uso, P 6	fourmaline P6/	Proutite m PE	U,2/F,	Coquintite P622	Portlandte P5,22	Piscerite-(La)	PG146 P5,22	Caldite P6,22	14 K
Aisi Pismon P	NUCUPO, BCC 1	Sr(S,Q,)(P	10). Gi P5janc 1. A. A. J.	(5,0.)(H,0), P-5m2	Nepheine P-6r2	UNIC P-62/	γ Υ ο, ειθοτείος η Ρ.	thipmototic minimetabilitie 62c P6/r	Nuoropatite 110 nuoropatite 110	mer P6	Alfs /mcm	LIETB P6 ₁ /mmc	P23	ne-(0e) β-Eucryp F23	ам с 123
ALCN AL 72,3	Pm-3	ниц, Ро-3	All Fm-3	NCJF(CC) Fd-3	J BATI(S, Jm-3	A.I N PD-3	1,0, s 1,0, s	бы,О, Р432	AB, P4,32	Beryl F432	24, 74,32	Graphite M322	Eu(Auf.); P4,33	2:50, 2 P4;32	в,о,
КРЬ,О, Р-43т	5-10-10 5-10 5	MishiOH). /43m	K,Pejcu(NO,I.) P-43n	Dodecasi F-43c	Na, WO, 143d	Pyrite Pan-3an	Yttria Pin-30	BF-9-04 Pt2-30	Bu,P, Pn-3m	PCH-20 Fcm-3m	Ta(OH), Fm-3c	NHe. Fd-3m	Life(d) Fd-3c	C(NH))	,(SO,)
		群								#		*	5 2 5 2 5 7 5 2 5		

- Increasing reflection density with increasing angle, where intensity drops
- Large cell size

• Radiation sensitivity

†?

An internal standard for pharmaceuticals with synchrotron radiation

- Synchrotron radiation, transmission, capillaries (angular resolution/counting statistics)
- High brilliance and angular resolution
- Tunability of the wavelength
- Mythen detector (also in laboratory)
- Very small sample volume, particle statistics problem

Microabsorption

• Little absorption contrast required

- Underestimated weight ratio for high absorber
- Brindley correction complicated to apply
- Rather avoid than correct:
 - Similar linear absorption coefficient
 - Tuning the wavelength
 - Particle sizes

Microabsorption

- Experience with Alumina, which amount?
- Effect of particle size on QPA accuracy

• Upper limit to the particle size

	Density (g.cm-3)	Attenuation length (CXRO, in microns)
Paracetamol	1.26	5120
Salicylic Acid	1.44	4000
Carbamazepine	1.29	5880
Corundum	4.02	299

Adapted from: Pederson et al., Advances in x-ray analysis, 46, 2003. Pederson et al., Advances in x-ray analysis, 47, 2004.

Microstructure: Particle size

- Precision of QPA: homogeneity / particle statistics
- Closest particle size, similar density and particle shape
- No extinction effects
- Preferential orientation: isometric particles

- Preparation step mandatory
 - -Grinding
 - Ball milling...

Microstructure: Crystallite size

 Avoid fluctuations along Debye-Scherrer rings

• Avoid fluctuations between replicate samples

Crystallite diameter (um)	40	10	1	
Crystallites (20 mm ³) Number diffracting	5.97×10^{5} 12	3.82×10^7 760	3.82×10^{10} 38 000	
σ _{PS}	0.289	0.036	0.005	

Robert E. Dinnebier and Simon J. L. Billinge, Print ISBN: 978-0-85404-231-9, DOI:10.1039/978184755823 adapted from: D. K. Smith, Adv. X-Ray Anal., 1992, 35, 1-15

- Limit peak overlap
- High symmetry
- High crystallinity

https://crystalsymmetry.wordpress.com/2014/08/15/the-space-group-list-project-as-a-poster/

- Limit peak overlap
- High symmetry
- High crystallinity

- Limit peak overlap
- High symmetry
- High crystallinity

- Angular range
- Well-known structure
- Known crystallinity

Additional constraints

- Stability
 - -during preliminary powder preparation/mixing
 - in mixture
 - -to x-rays
 - in time during storage
- Safe to handle
- Cheap, easily available
- Not present in the analyte mixture !

Formulated drugs

besides internal standard addition analyte mixture should stay **identical!**

Amount of internal standard

Case study

- QPA on absolute scale of traces in organic mixture with synchrotron radiation
- Constraints due to: ✓ Internal standard method
 - ✓ Use of SR-XRPD
 - \checkmark Application on pharmaceuticals

Photo: Paul Scherrer Institute

Case study: Analyte mixture

- QPA of a ternary organic mixture with several candidates
- Negligible impact of intrinsic properties on the refinement
- APIs well-known structure:
 - Majority phase: Acetaminophen (Ball milled) 75 to 96 %w/w
 - Medium phase: Salicylic Acid (Ground) 3 to 20 %w/w
 - -Minority phase: Carbamazepine (Ground) 0.1 to 5 %w/w

• Adapt particle and crystallite size

Case study: Internal standard candidates

Internal Standard	Chemical formula	Density (g.cm ⁻³)	Crystal structure
Hexamethylene- tetramine	(CH ₂) ₆ N ₄	1,33	Cubic
Diamond	С	3,51	Cubic
Lithium fluoride (precipitated, 99,995%, Sigma Aldrich)	LiF	2,635	Cubic
Monosodium citrate (Jungbunzlauer)	NaH2C6H5O7	1,5	Two known polymorphs: monoclinic & orthorombic
Sodium carbonate (anhydrous, ≥99,9999%, Sigma Aldrich)	Na ₂ Co ₃	2,54	monoclinic or orthorombic
Zeolite (Faujasite)	$\begin{array}{c} [Na_{28.8}Ca_{14.4}(H_2O)_{263}] \\ [Si_{134.4}Al_{57.6}O_{384}] \end{array}$	1,93	Cubic
Corundum (as a reference)	Al_2O_3	4,02	Trigonal- hexagonal

Case study: Internal standard candidates

Internal Standa	rd Chemical formula	Density (g.cm ⁻³)	Crystal structure	
Hexamethylene- tetramine	(CH ₂) ₆ N ₄	1,33	Cubic	Selected
Diamond	С	3,51	Cubic	Very hard
Lithium fluoride (precipitated, 99,995%, Sigma Aldrich)	LiF	2,635	Cubic	Selected
Monosodium citrate (Jungbunzlauer)		L 1/10 L 10/10 10 10 10	- 1 2 21 22 23 24 26 28 28 27 28 28	Low symmetry
Sodium carbonate (anhydrous, ≥99,9999%, Sigma Aldrich)			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Low symmetry
Zeolite (Faujasite)	[Na _{28.8} Ca _{14.4} (H ₂ O) ₂₆₃] [Si _{134.4} Al _{57.6} O ₃₈₄]	1,93	Cubic	Later stage
Corundum (as a reference)	Al_2O_3	4,02	Trigonal- hexagonal	Selected

Case study: Sample preparation

- Target particle size distribution: 1-5 microns
- Microsieving 5 to 20 microns:
 - -As received, ground and ball-milled HMTA and LiF
 - agglomeration problem / too large psd
- Ball-milling
- Characterization techniques:
 - Laser granulometry
 - Optical microscopy
 - -Scanning electron microscopy

Case study: SR-XRPD

- Avoid transparency effect: transmission geometry
- Achieve sufficient statistics in small volumes:
 - –Trade of between capillary diameter and achieved resolution
 - -Capillary spinning
 - –Data on multiple cap. volumes

• HMTA: not stable in mixture !

• High density

X-ray beam

PAUL SCHERRER INSTITUT	Case study: LiF						
Crystal structure	РО	Reactivity	Agglomerates	Particle/ crystallite size	Homogeneity	Micro- absorption	QPA analysis
~	no	~		~		no	LiF systematically overestimated

• Inhomogeneous distribution in spite of milling and careful mixing

PA	Excelsus Structural Solutions	Case study: LiF							
	Crystal structure	РО	Reactivity	Agglomerates	Particle/ crystallite size	Homogeneity	Micro- absorption	QPA analysis	
	v	no	~		~		no	LiF systematically overestimated	

- Inhomogeneous distribution in spite of milling and careful mixing
- Strong agglomeration, hygroscopic

Case study: Preliminary results

	Alternative?					
	Acetaminophen	Salicylic Acid	Carbamazepine			
Crystal structure	×	×	~			
РО	yes	yes	no			
Reactivity	✓	✓	✓			
Agglomerates	no	no	no			
Particle/ Crystallite size	×	×	✓			
Homogeneous distribution	×	×	no			
Micro-absorption	no	no	no			
QPA satisfying	no always underestimated	no always overestimated	no always overestimated			

Constraints must be taken into account due to

- Internal standard's role in itself
- Analyte mixture
- Instrument used

⇒ Adapt internal standard to analyte and instrument

Step-by-step approach, preliminary tests on important points

Know your pure phases the best you can (amorphous content)

Consistency in sample preparation

References

Deane K. Smith Powder Diffraction, 16, pp 186-191, (2001), doi:10.1154/1.1423285 Wall, C. et al, Powder Technology, 09/2014; 264:409-417. J. W. Shell, Journal of pharmaceutical sciences 52, 1 (1963). Schreyer, M. et al., Journal of applied crystallography, 44, 1, 17 (2011). Pederson, B. M. et al., Adv. X Ray. Anal. 47, 200 (2004) Wandt, M.A.E. and Rodgers, A.L., Clin. Chem. 34/2, 289 (1988) X-ray powder diffractometry, Suryanarayanan R., 1995 Stephenson, G. A. et al., The Rigaku Journal, 22, 1 (2005) Dash, A.K. et al., Journal of pharmaceutical sciences, **91**, 4 (2002). Phadnis, N. V. et al., Pharmaceutical Research, 14, 9 (1997) Clas, S. D. et al., International Journal of Pharmaceutics, 121, 73 (1995) Rogers, T. L. et al., Pharmaceutical Research, 21, 11 (2004) Le Troedec, M. et al., Composites: Part A, 39, 514 (2008) Alexander L. and Klug H. P., Anal. Chem., 20, 886 (1948) Mandile, J. A. et al., International Journal of Coal Geology, 28, 51(1995) Chrzanowski, F.A. et al., Journal of pharmaceutical sciences, 73, 10 (1984) Otsuka, M. and Kaneniwa, N., Chem. Pharm. Bull. 31(12), 4489 (1983) Riello P. et al., J. Appl. Cryst. 28, 121-126 (1995)

A Practical Guide for the Preparation of Specimens for X-Ray Fluorescence and X-Ray Diffraction Analysis <u>Victor E. Buhrke</u> (Editor), <u>Ron Jenkins</u> (Editor), <u>Deane K. Smith</u> (Editor), <u>ISBN: 978-0-471-19458-3</u>

Powder Diffraction: Theory and Practice, 2008

Robert E. Dinnebier and Simon J. L. Billinge, Print ISBN: 978-0-85404-231-9, DOI:10.1039/978184755823

Quantitative X-Ray Diffractometry, 1995

Lev S. Zevin, Giora Kimmel, ISBN: 978-1-4613-9537-9 (Print) 978-1-4613-9535-5 (Online)

X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, 1974

Harold P. Klug, Leroy E. Alexander, ISBN: 978-0-471-49369-3

Wir schaffen Wissen – heute für morgen

My thanks go to

- Ian Madsen, CSIRO
 Process Science and
 Engineering , Australia
- N. Casati and MS beamline staff, PSI, Switzerland
- A. Testino
 PSI, Switzerland
- A. Weber PSI, Switzerland
- E. Pomjakushina, PSI, Switzerland
- C. Padeste,
 PSI, Switzerland
- P. Mazzeo, A. Prodi,
 F. Gozzo, Excelsus
 Structural Solutions

Wir schaffen Wissen – heute für morgen

Thank you for your attention!

Contact: m.reinle-schmitt@excels.us