FFARD-14

Pharmaceutical Powder X-ray Diffraction Symposium

6-9 June 2016

JXRD-14

Fort Myers, Florida, U.S.A.

Instrumentation and Applications of XRD² for Pharmaceutics Bob He, Bruker AXS

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

X-ray Applications for typical pharmaceutical samples

XRD & XRD ²	Single Crystal	Several Grains	Powder	Finished Product	Solutions
Qualitative Phase ID	✓ Φ⊕	✓Φ⊕	vФ	vФ	vФ
Quantitative Rietveld analysis			✓		
Quantitative analysis with standards		✓	✓	~	
X-ray movie, Non-Ambient	vФ	vФ	vФ	√ Φ	vФ
Structure solution, Indexing	√ Φ		✓		
Microdiffraction/ Mapping		√Ф⊕	√ Φ⊕	√Ф⊕	
Shape analysis			vФ	√ Φ	vФ
HTS	√ Φ⊕	✓Ф⊕	√ Φ⊕		
Grain-Size det.		vФ	vФ		
%Crystallinity		✓Φ⊕	√ Φ⊕	√ Φ⊕	√ Φ⊕

 \checkmark - can be performed by either XRD or XRD²

 Φ – better with XRD²

 \oplus - accept performance and accurate results only with XRD²

Basic Concept – XRD²

BRUKER

Conventional X-ray Diffractometer

XRD²: Two-dimensional X-ray Diffraction

XRD²: Single Frame from Battery Anode Collected with Vantec-500 Detector

• 20 coverage: 70° at 8 cm detector distance

Contains information on phase, stress, texture and grain size

bob.he@bruker-axs.com

bob.he@bruker-axs.com

Fundamental Equations and Diffraction Vector Approach

XRD²: Diffraction Vector as a Function of 2 θ and γ

XRD²: Sample Space and Unit Diffraction Vector

XRD²: Diffraction Vector as a Function of γ

Sources & Optics

How to make brighter source I: Microfocus sources

- Brightness (B) is proportional to power loading (p)
- >99% power turns to heat and needs to be removed
- Power loading is higher for *smaller spot focus*

$I\mu S$ microfocus source

- Intensity 3x10¹⁰ Xrays/mm²-sec (Cu Kα)
 - 8 times higher than conventional 5.4 kW rotating anode
- Typical lifetime >5 years
 - High reliability
 - 3 year warranty
 - >300 installed
- Air-cooled
- Available in Cr, Cu, Mo, Ag

6/15/2016

IµS & VÅNTEC-2000 vs. Classic Set-up Corundum Comparison

Sealed Tube with Göbel Mirror 45kV, 40mA, (1800 W) 0.3mm collimator total counts: 78K

Intensity: 15.8x; Efficiency: 948x !

Microsource $(I\mu S)^{TM}$ 45kV, 0.650mA, (30 W) 0.3mm collimator total counts: 1235K fficiency: 948x !

NEW: Liquid metal sources

- High-speed liquid-metal-jet anode
- Anode is regenerative
- No longer limited by melting
- >500 kW/mm² e-beam power density
 - Rotating anode limited to maximum 50 kW/mm²

6/15/2016

Source Spectrum and Brightness

Spot size [µm, FWHM]	Voltage [kV]	Power [W]	Ga K α Brightness [Photons/(s × mm ² × mrad ² × line]
5	60	50	1.5 × 10 ¹¹
10	60	100	7.6×10 ¹⁰
20	60	200	3.8 × 10 ¹⁰

So, is it possible to put a synchrotron beamline on a table top?

 Yes, at least the equivalent of a typical present generation bending magnet beamline

Detector

Choice of Detectors: 0D/1D/2D

LYNXEYE XE

- Silicon strip technology
- Best Energy Discriminator of any 1D detector
- 0D, 1D and 2D modes
- Ideal detector for random powders and RSMs
- No Maintenance

VANTEC 500

- Detector with the Largest Active Area
- Radiation Hard
 - Can take the direct beam and strong reflections
- No Maintenance

PILATUS3 R 100K-A

- Hybrid Photon Counting (HPC) technology
- High count rate capability
- Sensitivity: Co, Cu + hard radiation (Mo, Ag)
- Active area: 83,8 x 33,5 (2.807) mm2No
 Maintenance
 - Pixel size: 172µm (195 x 487 pixel)

VÅNTEC-500 – Outperforms all previous gaseous detectors.

- Large active area: 140 mm in dia.
- Frame size: 2048 x 2048 pixels 1024 x 1024 pixels 512 x 512 pixels
- Pixel size: 68 μm x 68 μm 136 μm x 136 μm 272 μm x 272 μm
- High sensitivity: 80% DQE for Cu
- High max linear count rate: 0.9 Mcps – global; 160 kcps/reflection -local
- Low background noise: <10⁻⁵ cps/pix
- Maintenance-free: no re-gassing

D8 DISCOVER with PILATUS3 R 100K-A BRUKER 2D HPC Technology for Your Lab Instrument

XRD² : Detector Orientation: γ -optimized vs. 2 θ optimized

XRD² : Choice of Detectors: Active Area and Orientation

XRD² : Detector Orientation and Distance: frames collected with Aspirin

 2θ optimized – 90° Mode

50 mm

10 mm & 20 deg off

Sample Stage & System Configuration

XRD² : Sample Stages for Various Application

Centric Eulerian Cradle

- Most versatile stage on the market
- Ψ, φ, <u>X, Y</u> and Z are always mounted

Universal Motion Concept Stages

- Sits in front of the goniometer
 - Allows more weight and travel
- UMC 1516
 - Ψ, φ, X, Y and Z
- UMC 150 HTS
 - Designed for Reflection and Transmission
 - 96 well plates
 - X, Y and Z

Accessory Attachments

- Attach directly to the XY table
- Standard Powder Adapter (included)
- Dome Temperature stages
- Capillary Attachment
- Wafer Chucks

Horizontal System

Horizontal th-2th, CEC

No barrier between 0D/1D/2D

Vertical theta-theta, CEC for microdiffraction/stress/texture

High-throughput Screening (HTS)

Vertical theta-theta, Reflection/Transmission

D8 DISCOVER High Throughput Screening

Phase Identification

XRD²: Phase ID Measurement Geometry

XRD²: Single Frame Covering All

- Multilayer battery anode.
- 20 coverage: 70° at 8 cm detector distance
- A single frame showing information on phase, stress, texture and grain size
- 2D detector is essential for In-situ measurement

Ibuprofen Integrated to 1-D data

t	Dist	Beam	
15 s	15cm	300 µm	

XRD²: Data Collection:

Acetaminophen powder

5 second data collection

30 second data collection

XRD²: Frame Merge and Integration

XRD²: Mapping: API Distribution in a Pill

XRD²: High throughput screening Laser/video sample alignment

Easy and accurate sample positioning without touching the sample surface

Starting point

Video image of each material library spot can be automatically stored during data scan

PolySNAP for Combined Analysis: Correlation among XRD, Raman and other probes

Particle/Crystal Size

XRD²: Crystal Size by γ profile analysis: Organic glass for food & drugs

43

cifi

- The number of spots on the ring is determined by crystallite size, instrumental window (γ-range), multiplicity of the crystal plane, and effective diffraction volume.
- The size of jelly beans and candy bin determines how many you can fill.

2-theta in d

72.628

Bruker Confidential

1024_030

MA 50

Bruker Confidential

XRD²: Particle size measurement by γ profile analysis: **BRUKER**

For XRD² in reflection mode, the crystallite size is given by

$$d = k \left\{ \frac{p_{hkl} b^2 \arcsin[\cos\theta\sin(\Delta\gamma/2)]}{2\mu N_s} \right\}^2$$

where $\boldsymbol{\mu}$ is the linear absorption coefficient

For transmission mode with the incident beam perpendicular to the sample surface, the crystallite size is given by

$$d = k \left\{ \frac{p_{hkli} b^2 t \arcsin[\cos\theta\sin(\Delta\gamma/2)]}{N_s} \right\}^{\frac{1}{3}}$$

where *t* is the sample thickness.

k is the instrument calibration factor or can be calculated from: $k = \left(\frac{3\beta}{4\pi}\right)^{\frac{1}{3}}$ if the instrument broadening in 20 direction is known.

XRD²: Particle Size Analysis

www.bruker.com

© Copyright Bruker Corporation. All rights reserved