TWO-DIMENSIONAL X-RAY DIFFRACTOMETRY IN PHARMACEUTICAL PRODUCT AND PROCESS DEVELOPMENT

Naveen K Thakral PPXRD-14 June 8, 2016

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Acknowledgements

- Prof. Raj Suryanarayanan (Univ. of Minnesota)
- Dr. Gregory Stephenson (Eli Lilly & Co.)
- Dr. Hiroyuki Yamada (Mitsubishi Pharma, Japan)
- Dr. Bob He (Bruker)
- Dr. Karl Jacob (Dow Chemical Co.)
- Characterization Facility (UMN)
- Argonne National Laboratory (Synchrotron)
- Eli Lily and Company
- Lilly Innovation Fellowship Award

In situ Phase Transformation

Market Recall

- 2012: Market recall of nimodipine due to crystallization of nimodipine in soft gel capsules, that could adversely affect the product's bioavailabilty *
- April 2013, Apotex Corp. recall of 15 lots of Pipercillin and Tazobactum for injection (USP): showing crystallization/precipitation in I.V. bags*
- Dr. Reddy lab (June 2014) and Wockhardt (Sept 2014): Metoprolol succinate *prolonged release tablet*, dissolution failure after 18 and 9 months of storage, respectively*

Physical Stability

Final product performance in solid dosage forms

Mitigation Strategy

Simultaneous quantification of reactants and products

To obtain mechanistic insight into phase transformation in tablet

Provide the above information with spatial resolution

Quantification, Mechanism, and Mitigation of Active Ingredient Phase Transformation in Tablets

Naveen K. Thakral, Vishard Ragoonanan, and Raj Suryanarayanan*

* Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States

Mol. Pharmaceutics, 2013, 10 (8), pp 3128–3136 DOI: 10.1021/mp400180n Publication Date (Web): July 22, 2013 Copyright © 2013 American Chemical Society

Compression-Induced Crystallization of Amorphous Indomethacin in Tablets: Characterization of Spatial Heterogeneity by Two-Dimensional Xray Diffractometry

Naveen K. Thakral^{†‡}, Sarat Mohapatra[‡], Gregory A. Stephenson[†], and Raj Suryanarayanan^{*‡} [†] Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States [‡] Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States

Mol. Pharmaceutics, 2015, 12 (1), pp 253–263 DOI: 10.1021/mp5005788

Spatial Distribution of Trehalose Dihydrate Crystallization in Tablets by Xray Diffractometry

Naveen K. Thakral^{†‡}, Hiroyuki Yamada[§], Gregory A. Stephenson[†], and Raj Suryanarayanan^{*‡}

[†] Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States

[‡] Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States

§ Mitsubishi Tanabe Pharma Co., 3-16-89 Kashima, Yodogawa-ku, Osaka 532-8505, Japan

Mol. Pharmaceutics, 2015, 12 (10), pp 3766–3775 DOI: 10.1021/acs.molpharmaceut.5b00567

Compression induced phase transformation in amorphous API: A case study

Compression of amorphous API Plan

- Introduction
- Analytical method development
- Proof of concept using amorphous trehalose tablets
- Case study: Compression of amorphous indomethacin
- Conclusion
- Other projects

Plan

- Introduction
- Analytical method development
- Proof of concept using amorphous trehalose tablets
- Case study: Compression of amorphous indomethacin
- Conclusion
- Other projects

Effect of Compression on Amorphous Indomethacin

QTPP			
Description	: Round flat tablet.		
Size	: Diameter 8 mm.		
Identity	: Positive for active ingredient.		
Assay	: ± 5% weight.		
Physical form	: Amorphous.		
<i>In vivo</i> availability: Immediate release determined by <i>in vitro</i> dissolution test.			
Dose Uniformity Packaging	: Meet pharmacopoeial standard. : Unit dose, moisture protection.		

Plan

- Introduction
- Analytical method development
- Proof of concept using amorphous trehalose tablets
- Case study: Compression of amorphous indomethacin
- Conclusion
- Other projects

Analytical Methods

X-ray Diffraction

B He. 2009

XRD in Space (NASA)

XRD in Lab.

He	c1 1	
HC 03 C C Ma 2- Wi	C11_01_002.gfrm 3/10/14 14:16:48 reated 03/10/14 ag,Quad 1 0 Theta 20.0000 idth 0.00000 punts 6455011	
	ime (s) 400.067 stance 15.0000 24	
51	ze 1024 22	
E State Stat	rame was taken at -Theta 20.0000 20	
	ni 305.043 18	
Ch X	ri 0.00000	
	0.00000	
Z	14 U.00000 14	
	12	
	10	
	8	
	Th 20.000 X 0.000 me 0.000 Y 0.000 6	
Ph	ni 305.043 Z 0.000	
She s	nutter CLOSED	
Pi	stance 15.0000 2	
Sp Sp	patial 1024_015 mA 40 0	
	DZ4x10Z4 Cu Bias	

Conventional Vs 2-Dimensional XRD

Averaging Integration Algorithm

2-D and Texture (Preferred-Orientation)

B He.2009

- Introduction
- Analytical method development
- Proof of concept using amorphous trehalose tablets
- Case study: Compression of amorphous indomethacin
- Conclusion
- Other projects

Glancing angle XRD vs 2D-XRD

Glancing angle XRD – Depth of penetration: Amorphous

Thakral et al 2015

Depth of penetration as a function of incident angle

Depth of penetration as a function of incident angle

Depth of penetration as a function of incident angle

Integration of different layers

$$I_{SB} = I_0 K \int_{S}^{B} e^{-\mu x (\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})} dx = I_0 K \{ \frac{-[e^{-\mu B (\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})} - 1]}{\mu [\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)}]} \}$$

$$I_{SA} = I_0 K \int_{S}^{A} e^{-\mu x (\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})} dx = I_0 K \{ \frac{-[e^{-\mu A (\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})} - 1]}{\mu [\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)}]} \}$$

$$I_{AB} = I_0 K \int_A^B e^{-\mu x (\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})} dx = I_0 K \{ \frac{-[e^{-\mu B(\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})} - e^{-\mu A(\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)})}]}{\mu [\frac{1}{\sin\Omega} + \frac{1}{\sin(2\theta - \Omega)}]} \}$$

Integration of different layers

28

Crystallization– Amorphous trehalose tablets

Glancing angle XRD

2DXRD of split tablets

Specimen setup

Mapping

Mapping

Surface vs Core: Split tablets

Conclusion

XRD-2D

Critical Spatial Information (Not possible by conventional XRD or Glancing angle XRD)

Mechanistic insight of phase transformation

- Introduction
- Analytical method development
- Proof of concept using amorphous trehalose tablets
- Case study: Compression of amorphous indomethacin
- Conclusion
- Other projects

Effect of Compression on Amorphous Indomethacin

QTPP

: Round flat tablet.

: Diameter 8 mm.

: Positive for active ingredient.

- Description
- Size
- Identity
- Assay
- , loog , Dhuai aa lu
- Physical form
- : ± 5% weight.
- : Amorphous.

In vivo availability: Immediate release determined by *in vitro* dissolution test.

- Dose Uniformity : Meet pharmacopoeial standard.
- Packaging : Unit dose, moisture protection.

Product and Process Outline

Indomethacin (amorphous): particle size180 μm (# 80).

-Tablets (8 mm diameter); 200mg

-Compressed on Universal Material Testing Machine (Zwick GmbH & Co.)

- Compression pressure: 10, 25, 50, 100 MPa

-Compressed tablets stored in sealed Mylar pouch at 35 °C.

Prior Knowledge

- Thermodynamically → Pressure is "intensive variable"
- Amorphous compounds \rightarrow lower density than their crystalline counterparts.
- Compression \rightarrow densify amorphous materials \rightarrow promote intermolecular interactions and increase the probability of nucleation.
- "Amorphous material has an upper density limit, beyond which the external pressure induces strain and causes the materials to crystallize."

Wu C T 1975

Product CQA

Risk:

Amorphous \rightarrow crystalline (stable; low energy state) \rightarrow dissolution failure \rightarrow affect bioavailability

CQA \rightarrow "Stable" amorphous state throughout the shelf life of the product.

Experiment

2D XRD

Analytical techniques

Synchrotron XRD

(First evidence of crystallization)

• 2D-XRD

(Depth profiling)

Synchrotron XRD (Argonne National Laboratory) Beam-line 17 BM-B

Source	Bending Magnet		
Monochromator Type	Si(111)		
Energy Range	15-18 keV		
Resolution (ΔE/E)	1.5 x 10 ⁻⁴		
Flux (photons/sec)	8 x 10 ¹¹ @15 keV		
Beam Size (HxV)			
Focused	250µm x 160µm		
Wavelength	0.72808 Å		

Compressed Tablets (100 MPa) Time '0' (SXRD)

2D-XRD Depth Profiling Directions of Mapping

Depth Profiling (Radial) – 24 hours

Distance, mm

■ 10 MPa ■ 100 MPa

Unlubricated radial surface vs Core

Unlubricated radial surface vs Core

Compression with no wall friction

Compression vs hydrostatic

Lubrication (Magnesium stearate)

Internal lubrication Magnesium stearate (1% w/w) was added to amorphous indomethacin, before compression

External lubrication

External lubrication

Magnesium stearate applied to die wall

Internal vs External lubrication

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Conclusion

- Compression → induces crystallization.
- Shear stress due to die wall → additional crystallization.
- External lubrication → arrest additional crystallization.
- As pressure is inherent to compression, crystallization could not be stopped.

Unlubricated radial surface vs Core

Wall friction

I.C Sinka 2003

For liquids in a tank

 $Z \rightarrow$ height from top surface

Fluid vs Bulk solids

For bulk solids

Janssen's analysis (stresses in a cylindrical silo)

$$\sigma_{z} = \frac{\rho g D}{4 \mu K} \left[1 - e^{\left(4 \mu \frac{K}{D}\right) z} \right]$$

 $D \rightarrow Diameter$

$$\mu \rightarrow \text{wall friction } (\mu = \frac{\tau w}{\sigma w})$$

K \rightarrow Stress ration $(\frac{\sigma w}{\sigma z})$

Ongoing research

Reducing the compression pressure without compromising the tensile strength, by using plastic excipient like microcrystalline cellulose.

THANK YOU

QUESTIONS?