Capturing The Significance of X-Ray Crystallography in Pharmaceutical Field:

The Application to Characterize New Salt, Co-Crystal and Co-Amorphous

Etsuo Yonemochi

Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences,

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Acyclovir

- Guanosine analogue antiviral drugs.
- The treatment of herpes simplex virus infections.

Outline

Screening and Characterization

- Screenig methods and used additives
- Selected cocrystals (PXRD, TG/DTA, DSC)

Application for oral dosage form

- Intrinsic dissolution of selected cocrystal
- Crystal structure of selected cocrystal
- Mechanism for solubility enhansment

Application for transdermal dosage form

- Transdermal adsorption propertiy of selected complex
- Solubility of amorphous comples
- Improvement of transdermal properties

2/3 Hydrate

Commercially available

P2₁/n a 25.459(1) Å b 11.282(1) Å c 10.768(1) Å β 95.16(1) ° Volume 3080.342 Å³ Z 12 R-factor 5.3 %

Recrystalized from ethanol solution

Column structure Stacking purine moiety

Dihydrate

P-1 a 6.8386(7) Å b 11.3679(14) Å c 14.942(2) Å α 82.845(4) ° β 82.419(3) ° γ 89.326(3) ° Volume 1142.5(2) Å³ Z 4 R-factor 7.71 %

From ammonium solution

Channel structure Stacking purine moiety

Anhydrate2

Dehydration of hydrates

Stacking purine moiety

Anhydrate2

Crystallization by Vapor-Diffusion. Procedure. (DMF+Acetonitrile)

R-factor 9.88%

Z 8

Dissolution properties for acyclovir polymorphs

Transformation of anhydrate to hydrate was quick. Anhydrates were useless

Hydration mechanisum?

Hydration properties for acyclovir anhydrate2

Comparison between transition behavior and stacking mode

XRPD patterns of acyclovir using HT capillary sample holder

Intensity (cps)

13

Comparison from the view of stacking structure

Phase Transition of Acyclovir polymorphs

Conclusion

- There are two packing manners for purine moiety. Anhydrate 1, anhydrate 2, 2/3 hydrate and ACV dihydrate were packed in parallel, antiparallel, mixture of parallel—anti-parallel and parallel manners, respectively.
- Based on the packing manner of ACV, it can be seen why the phase transformation occurs with readily or with difficulty.

Outline

Characterization

- Screenig methods and used additives
- Selected cocrystals (PXRD, TG/DTA, DSC)

Application for oral dosage form

- Intrinsic dissolution of selected cocrystal
- Crystal structure of selected cocrystal
- Mechanism for solubility enhansment

Application for transdermal dosage form

- Transdermal adsorption propertiy of selected complex
- Solubility of amorphous comples
- Improvement of transdermal properties

Improvement of solubility

Improvement of the physicoshemical properties

Applicaton for oral dosage form

Cocrystal→Improvement of dissolution properties

Application for transdermal dosage form

Amorphization \rightarrow Increase the solubility in base \rightarrow Increase the absorption

Amorphization of Acyclovir

Conventional methods isn't suitable for the amorphization

Preparation of Amorphous complex with additives

Outline

Characterization

- Screenig methods and used additives
- Selected cocrystals (PXRD, TG/DTA, DSC)

Application for oral dosage form

- Intrinsic dissolution of selected cocrystal
- Crystal structure of selected cocrystal
- Mechanism for solubility enhansment

Application for transdermal dosage form

- Transdermal adsorption propertiy of selected complex
- Solubility of amorphous comples
- Improvement of transdermal properties

Screening methods

Generally recognized as safe compounds used

Lauric acid

Existence of the records as Oral or Trandermal application

PXRD patterns of samples

TG/DTA curve of samples

DSCcurves of amorphous complex

Glass transition temperature Tg was higher than the room temperature. Confirmation of the physical stability of amorphous complex

Outline

Characterization

- Screenig methods and used additives
- Selected cocrystals (PXRD, TG/DTA, DSC)

Application for oral dosage form

- Intrinsic dissolution of selected cocrystal
- Crystal structure of selected cocrystal
- Mechanism for solubility enhansment

Application for transdermal dosage form

- Transdermal adsorption propertiy of selected complex
- Solubility of amorphous comples
- Improvement of transdermal properties

Crystal structure of Acyclovir - Citric acid Cocrystal

Stoichiometry of Acyclovir : Citric acid was 1:1

Comparison of stacking structure of Acyclovir and its cocrystal

Anhydrare2

Acv-Citric acid Cocrystal

Un-stabilize the stacking structure by intercalation of citric acid

Enhancement of the solubility

Distance in the purine frame in the crystals

Improvement of dissolution property

Saturated Solubility of Cocrystal in various solvents

Physical mixture showed the similar solubility compare to the Cocrystal ACV and Citric acid was interacted, even in the solution.

Initial dissolusion profiles for ACV samples

Remarkable enhancement of solubility was observed.

Mechanism for improvement of dissolution property of ACV by Cocrystal formation

Decrease in the lattice energy

Outline

Characterization

- Screenig methods and used additives
- Selected cocrystals (PXRD, TG/DTA, DSC)

Application for oral dosage form

- Intrinsic dissolution of selected cocrystal
- Crystal structure of selected cocrystal
- Mechanism for solubility enhansment

Application for transdermal dosage form

- Transdermal adsorption propertiy of selected complex
- Solubility of amorphous comples
- Improvement of transdermal properties

In vitroTransdermal test for ACV ointment

Ointment base: Macrogol

Permeability of ACV

Application of amorphous complex?

Solubility of ACV in PEG400

Saturated solubility of ACV in Mcrogol base

Microscopic picuture of samples

ACV

ACV - Tartalic acid Physical Mix.

ACV - Tartalic acid amorphous

Low solubility ↓ Crystallization

Low solubility \downarrow Crystallization

Solubility: High ↓ Almost dissolved

Amorphous ACV complex was dissolved in super saturated states.

Permeability of ACV samples

Improvement of permeability of ACV was achieved

Advantage of amorphization for transdermal application

Comventional

amorphization

Chemical, physical enhacement methods might affects the barrier function of skin Increase the concentration gradient may not affect the barrier function

Safer method for transdermal application