1. Call to Order
 The meeting was called to order at 1:00 pm by W. Wong-Ng.

2. Appointment of Minutes Secretary
 G. Kazimierczak was appointed as the minutes’ secretary. Attendance List on record at headquarters.

3. Approval of March 2016 Minutes
 W. Wong-Ng projected the minutes from March 2016, and the minutes were approved by consent.

4. Review of Mission Statement
 The Ceramics Subcommittee shall be responsible for (1) identifying ceramic compounds in the PDF, organizing the ceramic subfile into minifiles according to their functions and properties, and (3) assuring the relevance and quality of the present and future data to meet the need of the user community.

5. Board of Directors Liaison Report
 S. Mixture reported that there were no motions made by the Ceramics Subcommittee to bring to the board. A special note that the Board of Directors are happy with the Subfile work that adds value to the PDF.

6. Technical Presentation
 Cement Materials – L.P. Cook
 • A brief Space-Time Tour of Cements
 • Cement Processing
 • Cement and the Environment
 • Cements in the PDF

Cements Subfile-Current Status --1360

Possible More Detailed Organization of Cement Subfile

A. Cements (primary flag)
 Type of Cement (second level flag)
 1. Portland
 2. Calcium Aluminate
 3. Slag, Pozzolan, Flyash, or Silica Fume -Containing
 4. Halide, Sulfate, Phosphate or Borate –Modified or -Based
 5. Organic Polymer –Modified or –Based
 6. Other (unspecified, specialty cements, etc.)

Cement Component (third level flag)
 1. Raw Material
 2. Clinker
 3. Addition or Admixture
 4. Pre-Setting Product
 5. Post-Setting Product
 6. Corrosion Product
 7. Unspecified

Is a more detailed organization of the cements subfile desirable?
 -Would it be of benefit to the users?
 -Is it doable?

What, if any, should be the role of the following?
 -Calculated Patterns?
 -Amorphous Phases?
 -Well-Characterized Mixtures?
 -Properties Sheets?
7. Task Group Reports

(a) Semiconductors

- Update—Specialty Set 67: 158 new entries.
 - Property sheets: 39 entries, some are due to Yucheng Lan
 - Identify industrially important semiconductors (~60 compounds)
 - Add physical properties and information:
 - Structural data:
 - Electronic properties (Eg)
 - Transport properties (carrier mobility, etc.)
 - Phase diagrams, etc.

- Plan for next year:
 - 40 I III V2 and II IV V2 compounds: CuInS2, CuGaS2, etc.
 - 20 I2 II IV VI4 compounds: Cu2FeSnSe4, Cu2ZnSnSe4, etc.

(b) Solar Materials

Task Group Report on Solar Materials

Energy Consumption Sources
- Fossil fuels
- Nuclear power
- Renewable energy

Solar Materials 2015

The order of the compounds listed below were given by the task group chair.

1) Hexagonal Selenium (Se)
2) Cubic Cuprous Oxide (Cu2O)
3) Cubic Silicon (Si)
4) Cubic Gallium Arsenide (GaAs)
5) Cubic Indium Phosphide (InP)
6) Tetrahedral Copper Indium Gallium diSelenide, CIGS (CuInxGa1−xSe2)
7) Cubic Cadmium Telluride (CdTe)
8) Cubic Gallium Antimonide (GaSb)
9) Cubic Germanium (Ge)
10) Tetragonal Copper Indium diSelenide, CIS (CuInSe2)

Properties and Datasheet of Photovoltaic Se

Solar Materials 2016

11) Cadmium Selenide (CdSe)
12) Cadmium Sulfide (CdS)
13) Indium Gallium Phosphide (InGaP)
14) Copper Zinc Tin Sulfide (CZTS)
15) Boron Nitride (BN)

Solar Materials 2017

16) Aluminium Nitride (AlN)
17) Gallium Nitride (GaN)
18) Indium Nitride (InN)
19) Boron Phosphide (BP)
20) Aluminum Phosphide (AlP)
21) Gallium Phosphide (GaP)
22) Boron Arsenide (BAs)
23) Aluminum Arsenide (AlAs)
24) Indium Arsenide (InAs)
25) Boron Antimony (BSb)
26) Aluminium Antimonide (AlSb)
27) Indium Antimonide (InSb)
28) Indium Bismuth Alloy (InBi)
29) Aluminium Gallium Phosphide (AlGaP)
30) Indium Gallium Arsenide (InGaAs)
31) Aluminium Gallium Arsenide (AlGaAs)
32) Indium Gallium Nitride (InGaN)
33) Aluminium Gallium Nitride (AlGaN)
34) Aluminium Gallium Antimonide (AlGaSb)
35) Gallium Indium Antimonide (GaInSb)
Solar Materials Expected in 2018

Oxides:
(Cu2O)
FeO
FeOOH
CoO
perovskite: ABO₃

Sulfides:
(CuZnSnS)
(CdS)
Cu₂S
Bi₂S₃

(c) Thermoelectric Materials
W. Wong-Ng/Y. Yan

How we judge how well the Thermoelectric Material in Figures of Merits (ZT); look for high ZT.

Patterns prepared CaO--Eu₂O₃-CoO₃

Samples/Patients for Thermoelectric-related Materials
- Ba₁₂Nb₈.₅Ta₀.₅Co₄O₃₆ (x=1,2,4,5,7)
- (Ca₂₋₃Gd₀.₃)Co₂O₆
- (Ca₁₋₃Nd₀.₃)Co₂O₆
- Sr₂RNbO₆ (R= Nd, Sm, Gd, Ho, Y, Tm, and Lu)
- Ni₁₋₃Zn₂CoNdO₃₋₂(x= 0.2, 0.4, 0.6, 0.8)
- B₁₋ₓCaₐCuSeO (x=0.05, 0.075, 0.1, 0.2 and 0.3)
- B₁₋ₓBaₐCuSeO (x=0.05, 0.075, 0.1, 0.2)

Set 67 Jack Yan (45)*

ICDD Thermoelectric Property Data List*
(Y. Yan, Wuhan University of Technology, 2016)

(d) Battery Materials
E. Pomerantseva

Update – Specialty Set 67 (837 entries):
- 13 compounds assigned to BAT:
 e.g., Li₂Fe₂P₂O₇, LiVP₂O₇, Li₀.₃₃Ti₂O₄, Na₃(VOPO₄)₂F
- 8 of which are electrode materials for lithium-ion batteries
- 3 of which are electrode materials for sodium-ion batteries
- 2 of which is a electrolyte material for solid-state lithium-ion batteries

Highlights in New Battery Materials*

New electrode materials reported:
- ‘LiₓMn₂O₄’ prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g⁻¹, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn³⁺/Mn⁴⁺ and O²⁻/O⁻ redox couples, and, importantly, of the Mn⁴⁺/Mn⁵⁺ couple also [Freire et al., A new active Li-Mn-O compound for high energy density Li-ion batteries, Nature Materials 15 (2016) 173].
- Transition-metal carbodiimides, MNCN (M = Cu, Zn, Mn, Fe, Co and Ni), are electrochemically active materials for electrochemical energy-storage systems. They exhibit high reversible capacities (200-800 mAh g⁻¹) for lithium and sodium ion batteries, stored by means of conversion reactions [Eguia-Barrio et al., Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries, J. Mater Chem. A 4 (2016) 1608].
- Transition metal carbid, nitrides and carbonitrides (MXenes): To date, numerous MXenes have been synthesized, including Ti₂C, V₂C, Nb₂C, Ti₃C₂, (TiₓN₁₋ₓ)₂C, (VₓO₁₋ₓ)₂C₂, TₓCN, Ta₂C₃, Nb₂C₃ and Mo₂TiC₂, and dozens more predicted.

* Reference list was presented in Wong-Ng’s presentation (available by request to HQ).
Ionic Conductors

1) V. B. Nalbandyan and G. Subba Rao, reviewed the list of entries for set 67. 16 FER and 9 ION Marks have been added. 31 previous ION marks have been marked wrong or dubious and reasons for this briefly explained. Several corrections of chemical formulas have been suggested.

2) New data sheets on structure and chemical properties of ionic conductors have been compiled and submitted to the ICDD. These were for only 20 of the planned 30 entries.

Lithium Ion Conductors*
- Stuffed Garnet type
- Tetrahedral Structures
- Antiperovskites

Fluoride Ion Conductors

Perovskites* L. Vasylechko
- Set 67 was reviewed and 179 patterns of the perovskite phases were identified;
- Organisation and plenary lecture on ICDD Workshop, September 23-24, Lviv, Ukraine
- Regular submission of experimental patterns through Grant-in-Aid Program.
 620 experimental patterns since 2002
 ≈ 550 patterns are of the perovskite and perovskite-related phases.
- Property sheet project (30)

Superconductors E. Antipov
- Identified 4 SCM materials:
 a. Tetragonal FeS (Tc = 5K)
 b. LiTi2O4 (Tc = 11K)
 c. Ta5GeB2 (Tc = 3.8K)
 d. LuV2Al20 (Tc = 0.57K)
- Disapprove the SCM flag for 5 phases from Set 67.
- Need to have more information from the ICDD
- Why the SCM flag was assigned to those phases?

Hydrogen Storage Materials* I. Zavaliy
- “Grant-in-aid No 03-05 “X-ray and Neutron Diffraction Data for Intermetallic Compounds and their Hydrides”
 25 XRD patterns and the crystal structure data of the intermetallic compounds and their hydrides were submitted to ICDD database. XRD patterns and crystal structure of new Nd3 MG Co hydride was presented as an example.
- 30 property files of the intermetallic compounds and their hydrides were prepared. Property sheet with PcT diagram as a main characteristic for the TiBe2 hydride is presented as a sample.

Ferroelectrics & Antiferroelectrics S. Ivanov/V. Nalbandyan/G.S. Rao
- No presentation

New Members Ceramics Subcommittee:
Sophie Beckett
Charlene Greenwood
Indrajit (Indy) Dutta

Interested in studying bio ceramics/magnetic material.

8. New business:

9. Motions: None

10. Adjournment: 2:00p.m., W. Wong-Ng

* Reference list was presented in Wong-Ng’s presentation (available by request to HQ).