

Data Mining with the PDF-4 Databases

FeO Non-stoichiometric Oxides

This is one of three example-based tutorials for using the data mining capabilities of the PDF-4+ database and it covers the following topic:

- FeO Non-stoichiometric Oxides
 - sorting out temperature and stoichiometric effects on cell parameters

Two other similar tutorials for data mining exist and cover the following topics:

- <u>CIGS Photovoltaics</u> (Solid Solution Example)
 - solid solution / cell parameter relationship
- <u>Carbamazepine</u> (Resolving Pharmaceutical Polymorphs)
 - a PDF-4/Organics application
 - investigating polymorphic forms of an active pharmaceutical ingredient (API)

Stoichiometric Factors Affecting the Diffraction Pattern of FeO

- FeO is frequently non-stoichiometric with Fe-site vacancies.
- These defects have crystallographic effects and can cause shifts in the observed powder diffraction peaks.
- Summaries of this effect can be "mined" from the PDF-4+ database and displayed for further study.

Crystal Structure of FeO*

Cubic System Space Group: Fm-3m NaCl type structure

*Structure taken from PDF entry 04-004-7638 calculated from the Linus Pauling File database (MPDS).

Data Mining for FeO Entries: Step 1

Use the Preferences Window to establish what will be displayed in the Search Results table . . .

A PDF-4+ 2012 File Edit Tools Window Help	 Click the 'Preferences' icon Click the 'Search' tab in the
	Preferences' window
63 Search Global Operator, Numeric Japut, Help	
Subfiles/Database Filters Periodic Table Flements Names References Structures	Miscellapeous
Database Status Ambient/Nor	-ambient (Amb.)
Not ICDD (00) Or Primary	pient @ Or
ICSD-FIZ (0) Cambridge I Preferences	
NIST (03) Help	
LPF (04) General 🛞 Search 🧐 PDF Card 🎢 Simulated Profile E	lectron 🔘 Ring Pattern 🔯 SIeve+
Display	
Open Forms in New Window	
Search	
Quality Mark (QM)	
Not Star (S)	
Indexed (I) Algorithm: Normalized R-index	
Blank (B) Compare To: Simulated Profile	•
Low-Precisio Prototyping Overlapping Region: Individual	
Hypothetica	
Good (G) Minimal Acc	
	Set raye
Search Show Results Ondock Page Re	set Page Reset All

Selecting Fields for the Results Table

Preferences			8
General Search	PDF Card 🛛 🎢 Simulater	d Profile Electron 🔟 Ring Pa	attern 🔯 SIeve+
ICDD Defaults	•	👍 Add Rename] 🔀 Delete
Available Fields Available Fields Available Fields Comparison Comparison	ase Filters Jla Iula	Selected Fields PDF # QM Amb. Chemical Formula SYS SPGR SG # XtlCell a XtlCell c Dcalc	
Report Prompt for report Scale report fields	title to page Cancel Apply	Reset Page Rese	t All
Expandable folders contain individual fields			

Selecting Fields for the Results Table

S Preferences		83
Help		
General 🔕 Search 🔍 PDF Card 🏼 🎘 Si	imulated Profile Electron 🍘 Ring Pattern	SIeve+
Held Sets		
ICDD Defaults	🔹 🕞 Add 🛛 🦳 Rename	💢 Delete
Available Fields	Selected Fields	
🕀 📁 💋 Subfiles/Database Filters	PDF #	
Elements	QM	
Empirical Formula	Amb.	
Structural Formula	Chemical Formula	
ony	SPCP	
HNA # Fl'e	5G #	
	XtlCell a	
References	XtlCell c	
🗄 📁 💋 Structures	Dcalc	
🗄 📁 🏳 Miscellaneous		
Report		
Prompt for report title		
Scale report fields to page		
searchepoirt noids topage		
		ר
Cancel	Apply Reset Page Reset All	

Available Fields:

Use these buttons to move selected items between the 'Available Fields' list of 90 items and the 'Selected Fields' list of items that will be displayed in the results table.

Selecting Fields for the Results Table

Selected Fields: Use these buttons to move a selected item up or down in the listed order for the results table.

Available Fields:

Use these buttons to move selected items between the 'Available Fields' list of 90 items and the 'Selected Fields' list of items that will be displayed in the results table.

Selecting Fields for Results Table (FeO)

-Selected Fields <u>Available Fields folder</u>									
PDF #	-	Always selected							
QM	-	Subfiles/Database Filters							
Amb.	-	Subfiles/Database Filters							
Chemical Formula Elements									
Atomic %	-	Elements							
SYS	-	Structures							
SPGR	-	Structures							
SG #	-	Structures							
XtlCell-a	-	Structures							
Dcalc	-	Miscellaneous							

Setting up the fields as shown here will serve the purposes of this example. (Click 'OK' at the bottom of the 'Preferences' screen when finished.)

	/Datab	ase Filt	ers P	eriodic	Table	Elemer	its Na	mes F	Referen	ces S	itructuri	es Mi	scellane	eous					
	IA	IIA	шв	IVВ	νв	VIB	VIIB		VIIIB		ІВ	ΙΙΒ	IIIA	IVA	VA	VIA	VIIA	VIIIA	
Period 1	1 H 1.008		Boole	an ye	es/No/N	laybe											,	2 He 4.003	
Period 2	3 Li 6.941	4 Be 9.012		Add		nner Oj	perators	5	~	Oute	r Opera	ators	5 B 10.811	6 C 12.01	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	
Period 3	11 Na 22.990	12 Mg 24.305	V	n Undo		Not		u O	Just	@ A	nd 🔘	Or	13 AI 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 CI 35.453	18 Ar 39.948	
Period 4	19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.941	24 Cr 51.996	25 Mr 54.938	26 Fe 55.845	27 Co 58.993	28 Ni 58.693	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	³⁵ Br	³⁶ Kr	
Period 5	37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc [98]	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	107.868	112.41	114.818	K e	121.76	ent 127.6	SF 126.904	e ar	nd C
Period 6	55 Cs 132.905	56 Ba 137.327		72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.967	80 Hg 200.59	81 TI 204.383	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222]	
Period	87 Fr [223]	88 Ra [226]																	
7			57 La 138.906	58 Ce 140.116	59 Pr 140.908	60 Nd 144.242	61 Pm [145]	62 Sm 150.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158.925	66 Dy 162.5	67 Ho 164.93	68 Er 167.259	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967		
7 LN:			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1	

🗟 Searc	h																		
Global	Operat	or Nu	umeric	Input	Help							Fir	nall	v cl	ick	'Ac	ld' t	o in	clude
Subfiles/Database Filters Periodic Table Elements Names References Structure									this criterion for the search										
	IA	IIA	шв	IVB	VB	VIB	VIIB	[VIIIB		в	IIB		IVA	VA	VIA	VIIA	VIIIA	
Period	1 H 1.008		Boole	an y _e	es/No/N	1aybe					5 2							2 He 4.003	
Period 2	3 Li 6.941	4 Be 9.012	ſ	Add		nner Oj	perator	s a @	~	Oute	r Opera	ators	5 B 10.911	6 C 12.01	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	
Period 3	11 Na 22.990	12 Mg 24.305		n Undo		Not	Or		or Tast	-	ind ()	Or	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 CI 35.463	18 Ar 39.948	
Period	19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.941	24 Cr 51.996	25 Mr 54.938	26 Fe 55.845	27 Co 58.993	28 Ni 58.693	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798	
Period 5	37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc [98]	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.41	49 In 114.818	50 Sn 118.71	51 Sb 121.76	52 Te 127.6	53 126.904	54 Xe 131.293	
Period 6	55 Cs 132.905	56 Ba 137.327		72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.967	80 Hg 200.59	81 TI 204.383	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222]	
Period 7	87 Fr [223]	88 Ra [226]																	
LN:			57 La 138.906	58 Ce 140.116	59 Pr 140.908	60 Nd 144.242	61 Pm [145]	62 Sm 150.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158.925	66 Dy 162.5	67 Ho 164.93	68 Er 167.259	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967		
AC:			89 Ac [227]	90 Th 232.038	91 Pa 231.036	92 U 238.029	93 Np [237]	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [262]		
			E	Search		Show I	Results	P	Undoo	:k Page		Rese	t Page		Resel	t All]		

Structure Criterion for Search: FCC Space Group #225 – 'Fm-3m'

entered on 'Structures' tab of 'Search' window

🔄 Search									
Global Operator Numeric Input Help									
Subfiles/Database Filters Periodic Table Elements Names Reference Structu	res Miscellaneous								
Pearson Symbol Code Author's Cell Crystal Data Reduced Cell	AET (Atomic Environment Type)								
Pearson Symbol Code (Pearson)									
Mith Hydrogen									
Construct Pearson Symbol Code									
al Symr _{⊙ Or} :e Cent _{⊙ Or} Not M End-	Symbol: Elements:								
Atom Count: to 1 Face	1#a Ac Ag Ag Ag Al								
With Hydrogen 🗸	3#a 3#b•v → Ar →								
Author-Defined Space Group (SPGR)	International Space Group Number (5G #)								
Not Contains Phr 🗸	Not Exa 225								
Author-Defined Aspect Symbol	Crystal (Symmetry Allowed)								
📄 Not Contains Phr 🗸	Not Centrosymmetric And								
Prototype Structure									
Chemical Formula O 👻									
LPF Prototype Structure	Has Atomic Coordinates (Coords)								
Mot Contains Elem 🗸 Chemical Formula O 🚽	Yes I Include Cross-Referenced Entries								
Show Results Indock Page	Reset Page Reset All								

Structure Criterion for Search: FCC Space Group #225 – 'Fm-3m'

entered on 'Structures' tab of 'Search' window

	💀 Search	
	Global Operator Numeric Input Help	
	Subfiles/Database Filters Periodic Table Elements Names References Structure	res Miscellaneous
	Pearson Symbol Code Author's Cell Crystal Data Reduced Cell	AET (Atomic Environment Type)
	Pearson Symbol Code (Pearson)	
	Not Contains Phrase 🗸 With Hydrogen 👻	
	Construct Pearson Symbol Code	
	al Symr _{O Or} :e Cent _{O Or} I Not I ∧ Prim I End-	Symbol:Elements:
	Atom Count: to C H Body T Face With Hydrogen	1#a ▲ Ac ▲ 2#a Ag → 2#b Al 3#a Am 3#b ↓ Ar ↓
	Author-Defined Space Group (SPGR)	International Space Group Number (SG #)
	🔲 Not Contains Phr 🗸	🕅 Not Exa 🔪 225
	Author-Defined Aspect Symbol	Crystal (Symmetry Allowed)
Perform search specified cher	ch using the nistry and criteria	Not Centrosymmetric Mon-centrosymmetric Or
opado group d	Let Prototype Schuttere	Has Atomic Coordinates (Coords)
	🕅 Not Contains Elem 👻 Chemical Formula O 👻	Yes Include Cross-Referenced Entries
	📿 Search 👽 Show Results 🛛 🞦 Undock Page	Reset Page Reset All

A total of 60 entries for Fe_{1-x}O compounds

You will get 66 entries if the 'Include Deleted Patterns' box is checked on the 'Subfiles/ Database Filters' tab of the Search window.

A description of your search_____ criteria is shown here.

Results of PDF-4+ Search for FeO

		1 ma		x ricip							
	ž		24								
Results (60 of	328.	660)									
		-									
Search Prefe	rence	Set: 1	ICDD Defaults		•						
PDF #	QM	Amb.	Chemical For	Atomic	%	SYS	SPGR	SG #	XtlCell a	Dcalc	
00-006-0615	L	A	Fe O	Fe50.00 O50	0.00	С	Fm-3m	225	4.307	5.973	٩,
00-046-1312	В	A	Fe O	Fe50.00 O50	0.00	C	Fm-3m	225	4.293	6.032	I F
01-071-4461	1	Т	Fe O	Fe50.00 O50	0.00	C	Fm-3m	225	4.354	5.782	
01-073-2143	1	A	Fe.974 O	Fe49.34 O50	.66	С	Fm-3m	225	4.309	5.845	
01-073-2144	I.	A	Fe.942 O	Fe48.51 O51	.49	С	Fm-3m	225	4.280	5.812	:
01-074-1880	1	A	Fe0.911 O	Fe47.67 O52	2.33	С	Fm-3m	225	4.290	5.625	
01-074-1881	1	A	Fe0.918 O	Fe47.86 O52	2.14	С	Fm-3m	225	4.293	5.646	
01-074-1882	1	A	Fe0.929 O	Fe48.16 O51	.84	С	Fm-3m	225	4.300	5.672	
01-074-1883	1	A	Fe0.932 O	Fe48.24 O51	.76	С	Fm-3m	225	4.301	5.682	
01-074-1884	L	A	Fe0.944 O	Fe48.56 O51	.44	C	Fm-3m	225	4.308	5.707	
01-074-1885	1	A	Fe0.944 O	Fe48.56 O51	.44	C	Fm-3m	225	4.310	5.702	
01-074-1886	н	A	Fe O	Fe50.00 O50	0.00	С	Fm-3m	225	4.341	5.834	
01-075-1550	1%	A	Fe O	Fe50.00 O50	0.00	С	Fm-3m	225	4.303	5.99	
01-077-7980	В	A	Fe O	Fe50.00 O50	0.00	C	Fm-3m	225	4.312	5.952	
01-079-1969	1	Т	Fe.920 O	Fe47.92 O52	2.08	С	Fm-3m	225	4.361	5.396	
01-079-1971	I.	Т	Fe.902 O	Fe47.42 O52	2.58	С	Fm-3m	225	4.355	5.338	
01-079-1972	1	Т	Fe.888 O	Fe47.03 O52	2.97	C	Fm-3m	225	4.349	5.297	
01-079-1973	I.	Т	Fe.880 O	Fe46.81 O53	8.19	C	Fm-3m	225	4.344	5.277	
01-079-2175	1	Т	Fe.928 O	Fe48.13 O51	.87	C	Fm-3m	225	4.351	5.47	
01-079-2177	I	Т	Fe0.92 O	Fe47.92 O52	2.08	С	Fm-3m	225	4.360	5.401	
01-084-0302	I.	Т	Fe0.909 O	Fe47.62 O52	2.38	С	Fm-3m	225	4.290	5.617	,
		5			C-1-1-1	1000		- T - S - S - S - S - S - S - S - S - S			

Analysis of the Resulting Database Entries

Most fields in the results table can be graphically illustrated in either X-Y plot or histogram form.

For the current application, we will use an X-Y plot to illustrate the a-axis cell parameter as a function of atomic % Fe.

To do this, 'Graph Fields...' is first selected from the 'Results' drop down menu of the 'Results' window.

Results (60 of Search Prefer	328 renci	S 25	'DF Card Imulated Profile Graph Fields]					
PDF #	QM	Amb.	Chemical For	Atomic %	SYS	SPGR	SG #	XtlCell a	Dcalc	
00-006-0615	I	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.307	5.973	
00-046-1312	в	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.293	6.032	Г
01-071-4461	1	Т	Fe O	Fe50.00 O50.00	C	Fm-3m	225	4.354	5.782	
01-073-2143	1	A	Fe.974 O	Fe49.34 O50.66	С	Fm-3m	225	4.309	5.845	
01-073-2144	1	A	Fe.942 O	Fe48.51 O51.49	С	Fm-3m	225	4.280	5.812	Ξ
01-074-1880	I.	A	Fe0.911 O	Fe47.67 O52.33	С	Fm-3m	225	4.290	5.625	
01-074-1881	1	A	Fe0.918 O	Fe47.86 O52.14	С	Fm-3m	225	4.293	5.646	
01-074-1882	1	A	Fe0.929 O	Fe48.16 O51.84	С	Fm-3m	225	4.300	5.672	
01-074-1883	I.	A	Fe0.932 O	Fe48.24 O51.76	С	Fm-3m	225	4.301	5.682	
01-074-1884	L	A	Fe0.944 O	Fe48.56 O51.44	C	Fm-3m	225	4.308	5.707	
01-074-1885	1	A	Fe0.944 O	Fe48.56 O51.44	C	Fm-3m	225	4.310	5.702	
01-074-1886	Н	A	Fe O	Fe50.00 O50.00	C	Fm-3m	225	4.341	5.834	
01-075-1550	1	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.303	5.99	
01-077-7980	В	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.312	5.952	
01-079-1969	1	Т	Fe.920 O	Fe47.92 O52.08	C	Fm-3m	225	4.361	5.396	
01-079-1971	1	Т	Fe.902 O	Fe47.42 O52.58	С	Fm-3m	225	4.355	5.338	
01-079-1972	1	Т	Fe.888 O	Fe47.03 O52.97	С	Fm-3m	225	4.349	5.297	
01-079-1973	L	Т	Fe.880 O	Fe46.81 O53.19	С	Fm-3m	225	4.344	5.277	6
01-079-2175	1	Т	Fe.928 O	Fe48.13 O51.87	C	Fm-3m	225	4.351	5.47	
01-079-2177	1	Т	Fe0.92 O	Fe47.92 O52.08	C	Fm-3m	225	4.360	5.401	
04 004 000D	1	T	Ee0.000 O	Ee 47 62 OE2 38	0	Em_3m	225	4 290	5.617	

Graph Fields	23
Help Rows: All 👻	To select the type of data for the x-axis, use the
Field: QM	drop-down menu here.
Y-Axis	
Field: Image: State	
Create Graph Cancel	

Graph Fiel	ds 🔣	
Help		
Rows: X-Axis		For this graph, we will
Field:	QM 👻	choose Alomic % for
Element:	QM Amb. Chemical Formula	the X-axis.
Y-Axis	Atomic %	
Field:	SYS SPGR	
Numb	SG # "XtlCell a	
	Create Graph Cancel	

Graph Fields 🛛 😹	
Help	
Rows: All X-Axis Field: Atomic % Element: Fe V-Axis O Field: (Mumber of Bins: 3 (Description) Bin Width: 0.9319	Now we select the element whose atomic % is to be plotted – in this case, 'Fe'.
Create Graph Cancel	

Graph Fields	
Help	
Rows: All X-Axis	
Field: Atomic %	Next we select the data to be plotted along the y-
Y-Axis	
Field: <hits></hits>	
<pre> Numbesc # XtICell a Dcalc </pre>	

Graph Fields	
Help	
Rows: All X-Axis	
Field: Atomic %	Click on 'Create Graph' to display the graph.
Y-Axis	1
Field: XtlCell a 🔹	
Number of Bins: 3 Den Width: 0.9319 Create Graph Cancel	

FeO a-axis Cell Parameter vs. Atomic % Fe

This graph shows little apparent correlation between atomic % Fe and a-axis.

Note that entries *reported* as being stoichiometric (1:1) are in a vertical line at right (50 at.% Fe). All others report less than stoichiometric amounts of Fe.

FeO a-axis Cell Parameter vs. Atomic % Fe

Further examination of individual entries separates ambient, high-temperature, and high-pressure determinations of the a-axis.

 Individual entries from this chart may be examined by left-clicking on individual spots. The illustration above shows the point label that appears when the mouse cursor is 'hovered' over this data point.

FeO a-axis Cell Parameter vs. Atomic % Fe

• If you left-click at this point, depending on the proximity of nearby points on the graph, you may directly bring up the 01-074-1883 entry, or bring up a list of the nearby points as shown above. In the latter case, the point of interest is selected from the list and then 'OK' is clicked. This entry is shown on the next slide.

PDF Card for FeO (01-074-1883)

🕒 Fe0.932 O - 01-074-1883																							X
File Edit d-Spacings Tools Window	w Help																						
🖶 🍛 🗵 🍅 🖹 2D	僻 a	K 🔝 🔮	0	22																			
d-Spacings																							
Wavelength	Fixed	Slit Intensity	ľ.						Ĩ	1,000	· · · · · · · · ·	T					1			1			
Cu Ka1 1.54056Å 🛛 👻	28	d(Å)	I	h	k	1	*			750													
Å	36.1450	2.483010	604	1	1	1			_	750													
<u>1</u>	41.9808	2.150350	999	2	0	0		ं	12 I														
Stick Datterne	60.8735	1.520530	463	2	2	0			fe	500 -					1								
	72.8865	1.296710	157	3	1	1			-														
V Fixed Slit Intensity	76.6963	1.241510	116	2	2	2				250 -					1								5
🥅 Variable Slit Intensity	91.5193	1.075180	43	4	0	0		8															
Integrated Intensity	102.6501	0.986648	48	3	3	1	_			0				-			-		-	-		1	-
Diffraction Patterns	105.4485	0.951555	109	4	2	0	_																_
	137 0761	0.877670	04	9	6	2					30	40	50	60	70	80	90	100	110	120	130	140	
Simulated Profile	101.0101	0.021010	F	ב		(20						
Raw Diffraction Data (PD3)			1 1	<u>ر</u>	93	2				- 0'	1-074	-188	3 (Fi)	(ed §	Slit In	tensi	ity) —	- 01-	074-	188	3 (Ca	lc)	
	1							-															
PDF Experimental Physical Crystal	Optical S	tructore Mis	cellanec	us I	Refe	ence	es C	ommen	ts														
PDF #: 01-074-1883			State	us: Pr	imary	(Q	M: Ind	dexe	d (l) b]					
Pressure/Temperature: Ambient						>						0.555											j
Chemical Formula (Fe0.932 O																							
Structural Formula:																1							
Empirical Formula: Fe0.932 O		The	'PC)F'	ta	b	of [·]	this	W	vind	OW	di	spl	lay	/S								
Weight %: Fe76.49 O23.51		the	actu	al	fo	rm	ula	a ar	۱d	stc	oich	nioi	me	etr\	/.								
Atomic %: Fe48.24 O51.76														,									
ANX: AX																							
Compound Name: Iron Oxide																							Ĩ
Mineral Name: Wustite, syn																							-1
Common Name:																							

PDF Card for FeO (01-074-1883)

S Fe0.932 O - 01-074-1883			_				
File Edit d-Spacings Tools Wind	ow Help						
🛃 🍛 🚺 🏙 🗈 20	o 🕸 🕿 🕃 🍕		2	1			
d-Spacings							
Wavelength	Fixed Slit Intensity	1			1	,000	
Cu Ka1 1.54056Å 🛛 👻	28 d(Å)	IH	n k	*			
Å	36.1450 2.483010	604 1	1 1	1		/50	
	41,9808 2.150350	999 2	2 0	0	sit.		
Click Deltanea	60.8735 1.520530	463 2	2 2	0	ten	500 -	
Stick Patterns	72.8865 1.296710	157 3	3 1	1	- I - E		
📝 Fixed Slit Intensity	76.6963 1.241510	116 2	2 2	2		250 -	
🥅 Variable Slit Intensity	91.5193 1.075180	43 4	4 0	0			
	102.6501 0.986648	48 3	3 3	1		0	
	106.4485 0.961666	109 4	4 2	0			
Diffraction Patterns	122.6690 0.877877	84 4	4 2	2		30	40 50 60 70 80 90 100 110 120 130 140
Simulated Profile	137.0761 0.827670	40 5	5 1	1		25	28
Raw Diffraction Data (PD3)					[-1883 (Fixed Slit Intensity) — 01-074-1883 (Calc)
DDE Experimental Divisial Cruste	L Optical Structure Mi	ccellaneoud	Refe	rences			
		scellarieous		i di i dobi ji d	onments	Reference	
Primary Reference	Calculated from I	CSD using .	POWD	-12++.			
Structure	"An x-ray study o	f the wuest	ite (Fe	O) solid s	olution: ". Je	tte, E.R., Foo	ote, F., Ohem. Phys. 1, 29 (1933).
-	1					1	
						l'	
						/	
	The 'Rei	ferenc	es' t	ah of	this wi	ndows	shows the source of the
	informat	ion. Al	Jtho	rs, in	this ca	se, are	E. R. Jette and F. Foote.

PDF Card for FeO (01-074-1883)

Fe0.932 0 - 01-074-1883 File Edit d-Spacings Tools Window Help Image: Spacings Tools Window Help Image: Spacing Spacing Tools Window Help Image: Spacing Tools Win																			_		
File Edit d-Spacings Tools Window Help Image: Spacings	Fe0.932 O - 01-074-1883																			0	
Image: State Patterns 20 Image: State Sta	ile Edit d-Spacings Tools Win	dow Help																			7
d-Spacings Wavelength	2 🌏 🚺 🏙 1	D 🕸 🔊	K 🔝 🔮	\bigcirc	2	3	1													/	
Wavelength previous graphical plot of 'a' vs. atomic % Fe Cu Kal 1.54056Å A Å A Stick Patterns 28 d(Å) I h k I * Variable Slit Intensity 1.50030 493 2 0 0 50	d-Spacings							This w	indc	w r	nay	y be	e cl	ose	ed to	o re	etur	n to	o th	е	
Cu Ko1 1.54056Å 28 d(Å) I h k I * Stick Patterns 36.1450 2.483010 604 1 1 1 H 19808 2.150350 999 2 0 0 500 500 Stick Patterns 60.8735 1.520530 463 2 2 0 500 <td>Wavelength</td> <td>Fixed :</td> <td>Slit Intensity</td> <td>Ľ</td> <td></td> <td></td> <td></td> <th>previo</th> <td>us g</td> <td>rap</td> <td>hic</td> <td>al p</td> <td>olot</td> <td>of '</td> <td>a' v</td> <td>'S.</td> <td>ato</td> <td>mic</td> <td>:%</td> <td>Fe</td> <td>).</td>	Wavelength	Fixed :	Slit Intensity	Ľ				previo	us g	rap	hic	al p	olot	of '	a' v	'S.	ato	mic	:%	Fe).
A 36.1450 2.483010 604 1 1 1 Stick Patterns 41.9808 2.150350 999 2 0 0 Stick Patterns 72.8865 1.296710 157 3 1 1 Variable Slit Intensity 76.6963 1.241510 116 2 2 2 9 Variable Slit Intensity 91.5193 1.075180 43 4 0 0 101fraction Patterns 91.5193 1.075180 44 2 2 0 Variable Slit Intensity 102.6501 0.986648 48 3 3 1 0<	Cu Kat 1.54056Å 🛛 👻	28	d(Å)	I	h	k		*	750										8		
All 3808 2.150350 999 2 0 0 Stick Patterns 60.8735 1.520530 463 2 2 0 Image: Stick Patterns 72.8865 1.296710 157 3 1 1 Image: Stick Patterns 72.8865 1.296710 157 3 1 1 Image: Stick Patterns 76.6963 1.241510 116 2 2 2 Image: Stick Patterns 91.5193 1.075180 43 4 0 0 Integrated Intensity 106.4485 0.961666 109 4 2 0 Image: Stick Patterns 122.6690 0.877877 84 4 2 0 Image: Stick Patterns 137.0761 0.827670 40 5 1 1 Image: Stick Patterns 137.0761 0.827670 40 5 1 1 Image: Stick Patterns 137.0761 0.827670 40 5 1 1 Image: Stick Patterns 137.0761 0.827670 1 1 1 1 1 </td <td>Å</td> <td>36.1450</td> <td>2.483010</td> <td>604</td> <td>1</td> <td>1</td> <td>1</td> <th></th> <td>/50</td> <td></td>	Å	36.1450	2.483010	604	1	1	1		/50												
Stick Patterns 60.8735 1.520530 463 2 2 0 Image: Stick Patterns 72.8865 1.296710 157 3 1 1 Image: Stick Patterns 72.8865 1.296710 157 3 1 1 Image: Stick Patterns 72.8865 1.296710 157 3 1 1 Image: Stick Patterns 72.8865 1.296710 116 2 2 2 Image: Stick Patterns 91.5193 1.075180 43 4 0 0 Image: Stick Patterns 91.5193 1.075180 43 4 0 0 Image: Stick Patterns 91.5193 1.075180 43 4 2 0 Image: Stick Patterns 91.5193 1.075180 44 2 0 0 0 Image: Stick Patterns 91.5193 1.075180 44 2 0		41.9808	2.150350	999	2	0	0	Sit			M										
Suck Pacterns 72.8865 1.296710 157 3 1 1 Image: Provide Stit Intensity 72.8865 1.296710 1157 3 1 1 Image: Provide Stit Intensity 72.8865 1.296710 116 2 2 2 Image: Provide Stit Intensity 91.5193 1.075180 43 4 0 0 Image: Provide Stit Intensity 91.5193 1.075180 43 4 0 0 Integrated Intensity 91.5193 1.075180 43 4 0 0 Integrated Intensity 106.4485 0.961666 103 4 2 0 Integrated Profile 157.0761 0.827670 40 5 1 1 Image: Provide Reference Image: Provide References Comments 20	Chiele Dathauna	60.8735	1.520530	463	2	2	0	ter	500					1							
Image: Priced Slit Intensity 76.6963 1.241510 116 2 2 2 Image: Priced Slit Intensity 91.5193 1.075180 43 4 0 0 Image: Intensity 106.4465 0.961666 109 4 2 0 Image: Intensity 106.4465 0.961666 109 4 2 0 Image: Intensity 122.6690 0.877877 84 4 2 2 Image: Intensity 137.0761 0.827670 40 5 1 1 Image: Intensity Image: Intensity Image: Intensity Image: Intensity Image: Intensity Image: Intensity Image: Intensity Image: Intensi		72.8865	1.296710	157	3	1	1														
Integrated Intensity 91.5193 1.075180 43 4 0 0 Integrated Intensity 102.6501 0.986648 48 3 3 1 Diffraction Patterns 106.4485 0.961666 109 4 2 0 Image: Simulated Profile 122.6690 0.877877 84 4 2 2 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 100<	V Fixed Slit Intensity	76.6963	1.241510	116	2	2	2		250	2					1						
Integrated Intensity 102.6501 0.986648 48 3 3 1 Diffraction Patterns 106.4485 0.961666 109 4 2 0 Image: Simulated Profile 122.6690 0.877877 84 4 2 2 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 20 Image: Simulated Profile 100.4485 Optical Structure Miscellaneous References Comments 20 Image: Simulated Profile 100.1000000000000000000000000000000000	📄 Variable Slit Intensity	91.5193	1.075180	43	4	0	0												1		
Diffraction Patterns Image: Simulated Profile Image: Simula	Integrated Intensity	102.6501	0.986648	48	3	3	1	_	0				-			1					1
Diffraction Patterns 122.6690 0.877877 84 4 2 2 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 20 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 20 Image: Simulated Profile 137.0761 0.827670 40 5 1 1 20 Image: Simulated Profile Image: Simulated Profile Image: Simulated Profile 20 20 20 Image: Simulated Profile Image: Simulated Profile Image: Simulated Profile 20 20 20 Image: Simulated Profile Image: Simulated Profile Image: Simulated Profile 20 20 20 20 Image: Simulated Profile Image: Simulated Profile Image: Simulated Profile Image: Simulated Profile 20		106.4485	0.961666	109	4	2	0	_						÷					S.,		
Image: Simulated Profile 137.0761 0.827670 40 5 1 1 20 Raw Diffraction Data (PD3) 110 0.827670 40 5 1 1 20 PDF Experimental Physical Crystal Optical Structure Miscellaneous References Comments Type References Comments References Comments rimary Reference Calculated from ICSD using POWD-12++. References Calculated from ICSD using POWD-12++.	Diffraction Patterns	122.6690	0.877877	84	4	2	2			30	40	50	60	70	80	90	100	110	120	130	140
Raw Diffraction Data (PD3) — 01-074-1883 (Fixed Slit Intensity) — 01-074-1883 (Calc) DF Experimental Physical Crystal Optical Structure Miscellaneous References Comments Type Reference Reference Calculated from ICSD using POWD-12++. Reference	📝 Simulated Profile	137.0761	0.827670	40	5	1	1								2	20					
PDF Experimental Physical Crystal Optical Structure Miscellaneous References Type Type Calculated from ICSD using POWD-12++.	Raw Diffraction Data (PD3)								- (1-07	4-18	83 (F	ixed (Slit Int	ensit	y) —	- 01-	074-1	883	(Calo	c)
Type Reference Primary Reference Calculated from ICSD using POWD-12++.	PDF Experimental Physical Cryst	al Optical S	tructure Mis	cellaned	ous	Refe	rence	Comments													
rimary Reference Calculated from ICSD using POWD-12++.	Туре								Refe	ence											1
	Primary Reference	Calc	ulated from IC	CSD usi	ng PC	owo	-12+-	â													
Structure "An x-ray study of the wuestite (Fe O) solid solutions". Jette, E.R., Foote, F. J. Ohem. Phys. 1, 29 (1933).	Structure	"An x	(-ray study of	f the wu	estite	(Fe	0) s	d solutions".	Jette, E	.R., F	oote,	F. <i>J</i> .	Chem	. Phys	9. 1, 29	9 (19	33).				-

Examining another nearby point, corresponding to entry 01-074-1882, we note that the reference lists the same authors, E. R. Jette and F. Foote.

There may be other entries across the range of stoichiometries that are based on these authors' work. We can add an author's name to the search criteria to examine just their entries.

Adding an Author to the Search

🗟 Search			
Global Operator Numeric Input Help		211	
Subfiles/Database Filters Periodic Table Elements N	ames References	Itructures Miscellaneous	
Author			
Not Contains Words			
Coden	Journal		
Not Exactly	Not Contains W	/ords	
Title			
🗖 Not Contains Words 🗸 🍯			
Chemical Abstracts Registry Service (CAS)	Year	Volume	
Not Contains Phrase	Not ESD:		
Show Results	🞦 Undock Page	Reset Page Reset All]

Without resetting the previous search criteria, we can add an author to the previous Periodic Table (Only Fe and O) and Structure (Space Group 225) specifications. Adding 'Jette' to the 'Author' box, and clicking 'Search' gives the Results list on the next slide:

Search Result Including 'Jette' as Author

PDF #	QM	Amb.	Chemical For	Atomic %	SYS	SPGR	SG #	XtlCell a	Dcalc
01-074-1880	E	A	Fe0.911 O	Fe47.67 O52.33	С	Fm-3m	225	4.290	5.625
01-074-1881	I	A	Fe0.918 O	Fe47.86 O52.14	С	Fm-3m	225	4.293	5.646
01-074-1882	1	A	Fe0.929 O	Fe48.16 O51.84	С	Fm-3m	225	4.300	5.672
01-074-1883	1	A	Fe0.932 O	Fe48.24 O51.76	С	Fm-3m	225	4.301	5.682
01-074-1884	t	A	Fe0.944 O	Fe48.56 O51.44	С	Fm-3m	225	4.308	5.707
01-074-1885	1	A	Fe0.944 O	Fe48.56 O51.44	С	Fm-3m	225	4.310	5.702
01-074-1886	Н	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.341	5.834

These results can be graphed as before . . .

These represent the results of one systematic study of stoichiometry vs. structure published by Jette & Foote in *J. Chem. Phys.*

The underlying numerical values from this resulting graph can be exported for analysis by other software programs such as Microsoft® Excel®. From the 'File' menu on this graph, 'Save...' is selected.

ave	Times .			
Save in	: 🚺 Results		💌 💋 📴 🔝	
(Th-1)				
Recent Items				
Desktop				
STree.				
Documents				
1				
2				
Computer				
-	12			
	File name:	FeO_CellParms_Jette&Foote		Save
Network	Files of type:	TODD Delimited back (* en)	1	Cancel
	, and or cyper	DEC (* ipp)		Cancer
			8	
	C	ICDD Delimited text (*,csv)		

The values can be saved to a 'CSV' (comma separated values) file for import into many other software analysis programs. The file name and folder are specified here as well.

An example of a Microsoft® Excel® analysis of the Jette & Foote data. The linear analysis equation can be rearranged to give . . .

This would allow one to calculate the atomic % Fe from a measured aaxis value.

FeO a-axis Cell Parameter vs. Atomic % Fe

Several entries in the 'High Temperature' region of the original results graph come from a single study, "Point Defect Clusters in Wuestite" by Radler, Cohen, & Faber, *J. Phys. Chem. Solids*, 51, 217 (1990). We can again use the author criterion to look at just these entries.

Change Author for Search

🗟 Search	
Global Operator Numeric Input Help	
Subfiles/Database Filters Periodic Table Elements Name	References Structures Miscellaneous
Author	
Not Contains Words	
Coden	Journal
Not Exactly	Not Contains Words
Title	
🗖 Not Contains Words 🛛 🗸 🏹	
Chemical Abstracts Registry Service (CAS)	Year Volume
Not Contains Phrase	Not ESD: Not Exactly
Show Results	Undock Page Reset Page Reset All

On the 'References' tab, 'Cohen' has been entered in the 'Author' field to obtain the desired PDF entries. The 'Structures' and 'Periodic Table' tabs contain the previously entered information regarding FeO and space group 225. This search will yield the 10 entries found on the next slide.

PDF Entries from Radler, Cohen, & Faber Study (1990)

Results (10 o Search Prefe	f 328 renc	F 2015 2015 2015 2015 2015 2015 2015 2015	PDF Card Simulated Profile Graph Fields.		•]					
PDF #	QM	Amb.	Chemical For	At	omic %	SYS	SPGR	SG #	XtlCell a	Dcalc
01-079-1969	I	Т	Fe.920 O	Fe47.92	O52.08	С	Fm-3m	225	4.361	5.396
01-079-1971	L	Т	Fe.902 O	Fe47.42	O52.58	С	Fm-3m	225	4.355	5.338
01-079-1972	1	Т	Fe.888 O	Fe47.03	O52.97	С	Fm-3m	225	4.349	5.297
01-079-1973	1	т	Fe.880 O	Fe46.81	O53.19	С	Fm-3m	225	4.344	5.277
)1-079-2175		Т	Fe.928 O	Fe48.13	O51.87	С	Fm-3m	225	4.351	5.47
)1-079-2177	I.	Т	Fe0.92 O	Fe47.92	O52.08	С	Fm-3m	225	4.360	5.401
04-014-4357	1	Т	Fe0.913 O	Fe47.73	O52.27	С	Fm-3m	225	4.367	5.343
)4-014-4358	1	Т	Fe0.911 O	Fe47.67	O52.33	С	Fm-3m	225	4.372	5.316
)4-014-4359	I.	Т	Fe0.950 O	Fe48.72	O51.28	С	Fm-3m	225	4.376	5.475
)4-014-4360	L	Т	Fe0.945 O	Fe48.59	O51.41	C	Fm-3m	225	4.373	5.462
04-014-4358 04-014-4358 04-014-4359 04-014-4360	1 	T T T	Fe0.911 O Fe0.950 O Fe0.945 O	Fe47.67 Fe48.72 Fe48.59	052.27 052.33 051.28 051.41		Fm-3m Fm-3m Fm-3m	225 225 225 225	4.372 4.376 4.373	5.3 ¹ 5.4 ¹ 5.4

The a-axis cell parameter for just these resulting 10 entries can now be plotted vs. atomic % Fe and the resulting graph is shown on the following slide.

Graph of Radler, Cohen, and Faber FeO Entries

These points represent two sets of high-temperature X-ray data obtained in the referenced report as follows:

1. Data varying T from 1123 to 1373 C with slightly increasing O content

2. Data varying stoichiometry at 1323 C from $Fe_{0.88}O$ to $Fe_{0.95}O$

Another Look at FeO results - Density

Return to the original list of 63 FeO entries using 'History' ...

PDF-4+ 2012 Edit Tools Wing 🛐 🚭 🔇 History	dow Help	Use the 'History' icor retrieve any searche already performed during this session.	n to	
e Help 🕽 🛃 🍰				
ast Searches Name	V Description		Hits	C Results
5earch #2	{Only (Fe And O)} And {International Space Group Nur (Deleted)}	nber Exactly '225'} And {Not Status	60	Rename
5earch #3	{Only (Fe And O)} And {Author Contains Words 'Jette' Number Exactly '225'} And {Not Status (Deleted)}	} And {International Space Group	7	E Belete
5earch #4	{Only (Fe And O)} And {Author Contains Words 'Coher Number Exactly '225'} And {Not Status (Deleted)}	n'} And {International Space Group	10	Telete All
ombined Searches Name	Description		¥ Hits	Operation
				Combined Results
				Add to Past Searche
				X Delete

Another Look at FeO results - Density

Return to the original list of 60 FeO entries using 'History' ...

Another way to analyze this data is to look at the density as a function of cell parameter. This is performed by using the 'Results' drop down menu to access 'Graph Fields...'

Another Look at FeO results - Density

🗸 Results - {Only (Fe And O)} And {Int									- 0 💌		
File Edit Fie	Id.	Result:	s imilarity Inde	x Help							
Rea - 16 - 16 - 16	3	EM S	PDF Card imulated Profile								
Search Prefer	'enci	Ċ	Graph Fields	•							
PDF #	QM	Amb.	Chemical For	Atomic %	SYS	SPGR	SG #	XtlCell a	Dcalc		
00-006-0615	L	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.307	5.973		
00-046-1312	В	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.293	6.032		
01-071-4461	1	Т	Fe O	Fe50.00 O50.00	C	Fm-3m	225	4.354	5.782		
01-073-2143	I.	A	Fe.974 O	Fe49.34 O50.66	С	Fm-3m	225	4.309	5.845		
01-073-2144	1	A	Fe.942 O	Fe48.51 O51.49	С	Fm-3m	225	4.280	5.812	E	
01-074-1880	1×	A	Fe0.911 O	Fe47.67 O52.33	С	Fm-3m	225	4.290	5.625		
01-074-1881	I.	A	Fe0.918 O	Fe47.86 O52.14	С	Fm-3m	225	4.293	5.646		
01-074-1882	1	A	Fe0.929 O	Fe48.16 O51.84	C	Fm-3m	225	4.300	5.672		
01-074-1883	1	A	Fe0.932 O	Fe48.24 O51.76	С	Fm-3m	225	4.301	5.682		
01-074-1884	L	A	Fe0.944 O	Fe48.56 O51.44	С	Fm-3m	225	4.308	5.707	8	
01-074-1885	1	A	Fe0.944 O	Fe48.56 O51.44	C	Fm-3m	225	4.310	5.702		
01-074-1886	Н	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.341	5.834		
01-075-1550	1	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.303	5.99		
01-077-7980	В	A	Fe O	Fe50.00 O50.00	С	Fm-3m	225	4.312	5.952		
01-079-1969	I	Т	Fe.920 O	Fe47.92 O52.08	С	Fm-3m	225	4.361	5.396		
01-079-1971	1	Т	Fe.902 O	Fe47.42 O52.58	C	Fm-3m	225	4.355	5.338		
01-079-1972	1	Т	Fe.888 O	Fe47.03 O52.97	С	Fm-3m	225	4.349	5.297		
01-079-1973	1	Т	Fe.880 O	Fe46.81 O53.19	C	Fm-3m	225	4.344	5.277		
01-079-2175	1	Т	Fe.928 O	Fe48.13 O51.87	C	Fm-3m	225	4.351	5.47		
01-079-2177	1	T	Fe0.92 O	Fe47.92 O52.08	C	Fm-3m	225	4.360	5.401		
01-084-0302	I	Т	Fe0.909 O	Fe47.62 O52.38	С	Fm-3m	225	4.290	5.617	-	

Search Description

Calculations

{Only (Fe And O)} And {International Space Group Number Exactly '225'} And {Not Status (Deleted)}

Mean:

ES

Median:

ESD:

Another Look at FeO results - Density

For this graph, we will plot the calculated density as a function of the cubic cell parameter.

Graph Fields		X
Help		
Rows: All X-Axis	•	
Field: XtlC		•]
Element	~	
Y-Axis		
Field: Do	lc	÷.
NumbersG +	s> #	
Dca	Create Graph Cancel	

Results: density vs. a-axis cell parameter for reported FeO structures

Illustration of correllations within this graph of density verses cell parameter for Fe_{1-x}O data

Summary for Data Mining Non-stoichiometric Cubic FeO

- Multiple explanations exist for unit cell parameter variations in non-stoichiometric FeO in the PDF
- Systematic studies regarding stoichiometry and/or temperature can be "mined" from the database
- No single relationship describes all the data, thus different "defect" arrangements must exist for these materials
- Ability to access PDF entries directly from graphs' facilitates obtaining other data and references

Thank you for viewing our tutorial. Additional tutorials are available at the ICDD website. <u>www.icdd.com</u>

International Centre for Diffraction Data

12 Campus Boulevard

Newtown Square, PA 19073

Phone: 610.325.9814

Toll Free Number in US & Canada: 866.378.0331

Fax: 610.325.9823

