

Electron Diffraction Search and Identification Strategies

Search Strategies for Electron Diffraction Historical

The use of the Powder Diffraction File (PDF) for electron diffraction applications has a decades' long history. Several products have been developed, by researchers in the field, as aids to phase identification by electron diffraction. Many of these have been produced or published by the ICDD.

These products include:

<u>Product</u>	<u>Published</u>
Fink Index	1963
Matthews Index	1965
Elemental and Interplanar	
Spacing Index (EISI)	1989
The ICDD-NIST-Sandia	
Electron Diffraction Database	1994, 1997
PDF-4+	2005-current

Electron Diffraction Searches

The Fink method (1963) introduced the concept of using an eight-line search index with an emphasis on low angle interplanar spacings of high intensity. The Matthews index (1965) was based on IBM keypunch cards and allowed users the ability to search interplanar spacing and chemistry, at the same time. These two methods took advantage of two known strengths of electron diffraction analysis, the frequent use of accompanying elemental data from a microscope (EDS), and the emphasis on low angle data in electron diffraction analysis.

These initial two products were computationally complex, especially for the limitations on computer memory and speed, at the time of introduction.

The EISI Index and the Electron Diffraction Database were computer-based methods based upon the best of both of the above principles, and the power of computers in the late 1980's. The EISI Index (1989) introduced elemental permutations and light element limitations that are based on practical considerations of the basic detection capabilities of energy dispersive spectrometers. This product also introduced effective searches that were based on unit cell parameters, space groups, chemical names and formulas. These products were co-developed by researchers at the ICDD, NIST and Sandia National Laboratories, with input from ICDD users and members. The last release of the Electron Diffraction Database in 1997 contained 87,200 entries.

PDF-4+

Search strategies for PDF-4+ have been developed by combining the knowledge gained from decades of use from prior electron diffraction products, with the power of a relational database equipped with JAVA interfaces.

<u>Data</u> – The relational database format allows data to be added annually from international sources. In Release 2008, the database contained 285,000 entries and is continuously growing.

<u>Custom Data Fields</u> – All empirical formulae have been converted to atom % and weight %'s to facilitate composition searches. For every data set, a Fink Index Table entry and a Long 8 Index Table entry has been generated.

<u>Designed Searches</u> – There are a variety of elemental and composition searches, including weight % and atomic %. With the plug-in Sleve+, users can also use Hanawalt, Fink and Long 8 Searches. Unit cells can be searched by author cells, crystal cells or reduced cells. There are a total of 48 searches that can be combined and permuted.

<u>Custom Data Simulations</u> – Electron Diffraction Patterns, Spot Patterns, and Electron Backscatter Patterns – each pattern can be custom adjusted for instrumental and specimen parameters.

Custom Simulations for Electron Diffraction

2D pattern, intensity versus 1/d or two theta

Spot pattern, 3-axes, x,y orientation and intensity

Custom simulations will not be a focus of this tutorial. Please see the tutorials on these subjects.

Electron Diffraction versus X-ray Diffraction Search Strategies

Precision and accuracy in powder x-ray diffraction experiments, for either interplanar spacings or lattice constants, approach 1-100 *parts per million* with calibrated instrumentation and standard methods. As a consequence, most search strategies for XRD are based on searching lattice parameters or d-spacings. Elemental analysis is used as a confirmation of correct identification and is often not used as part of the search strategy.

Precision and accuracy in electron diffraction experiments, for either interplanar spacings or lattice constants approach 1-100 *parts per thousand.* The lack of accuracy means that additional data is required for unambiguous identification. Fortunately, many ED experiments are routinely performed using accompanying chemical analysis from energy dispersive spectroscopy. Elemental analysis, or use of additional physical properties, is an essential part of an electron diffraction search and is a requirement for a correct identification.

Note: Modern EBSD, SAED and/or precession electron diffraction methods can improve precision and accuracy by ~10X over traditional ED analyses and represent an intermediate case.

Using Elemental Analysis for Electron Diffraction Searches

Interplanar	Num	nber of "hits" PDF-4+	
Spacing	No	Contains	Contains
<u>(ESD)</u>	<u>Chemistry</u>	<u>Ca</u>	<u>Si and Ca</u>
2 2(4)		4 676	222
3.2(1)	20,003	1,575	322
3.02(1)	3.434	139	20
	,		
3.002(1)	255	7	0
3.0002(1)	18	0	0

Results based on a *long line search*,* with and without chemistry, using PDF-4+ 2008.

*Searches of the longest (lowest angle) 8 d-spacings of a reference material using the cited constraints.

Search Strategies

The fundamental basis of most current commercial and public data analysis programs, available for phase identification by electron diffraction methods (ED, SAED, EBSD), is to combine measured d-spacings, or lattice parameters, with elemental analysis, to get a select small number of candidate materials (typically less than 20) to match with the unknown.

This is taking advantage of the statistics shown on the prior page.

Using Physical Properties for Electron Diffraction Searches

Similar correlations can be found with physical properties

Interplanar Spacing <u>(ESD)</u>	No <u>Chemistry</u>	Density <u>2.0(3)</u>	Color <u>Blue</u>
3.2(1)	28,663	507	123
3.02(1)	3,434	56	11
3.002(1)	255	1	0
3.0002(1)	18	0	0

Results based on a *long line search*,* with and without chemistry, using PDF-4+ 2008.

* Searches of the longest (lowest angle) 8 d-spacings of a reference material using the cited constraints.

Search Global C

> Subfiles Empiric

Formula

Compos

Wei
 El.

Elemental Searches in PDF-4+

VIIIA

He 4.003

Ne

18 Ar 39.948 36 Kr

4 83.798 54 Xe

Rn

														1		1				
perator Numeric Inp	out Help																	т	h	- 14
Database Filters Perio	dic Table	Elements Name	es Refer	ences :	Structur	es Misc	ellaneou	JS											ne	516
l Formula															0				~ ~	
 Contains Elements 	Cont	ains Phrase																S	ee	
Type (ANX)	-the															a			_	
Concarns O Exac	Abunhan	- C Flammanta / # Fla	1															p	ac	le
	I Not	1 Or Clements (# Lis	J.															•	, ,	' .
ght % 🔘 Atomic %	C	2																е	m	DI
/alue ESD		4																-		
		5																S	ez	arc
		7																	50	
		9																S	62	arc
		>=10																0	50	
																		C	n	nr
																				יי
																		0		m
																		C	1C	
			Global	n Operato	r Num	eric Inp	ut Help	,												
			Subfiles	/Databa	se Filter	Period	lic Table	Elemer	nts Nar	nes Re	ference	s Struct	ures M	liscellane	ous					
> 👪 📰				10			NB	VP	VID	VIID		VIIIB		п	шВ		11/0	1/0	MA	VIIA
		Former The Sh						VD	VID	VIID		VIIID				IIIA	IVA.	VA.	VIA	VIIA
	6		Period	¹ H										+/	Add					
			1	1.008										-01	odo	_	-			_
			Period	Li	Be	Inner	Operat	ors				Outer On	erators	\$10	nuo	B	°c	⁷ N	°o	F
			-	6.941	9.012			. @ AI	nd 🕥	Or						10.811	12.01	14.007	15.999	18.998
			Period 3	Na	Mg				nly 💿	Just		(6) And	O Or		AI	Si	P	S	CI
				22.990	24.305	21	22	23	24	25	26	27	28	29	30	26.982	28.086	30.974	32.065	35.453
			Period 4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
			Period	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
			5	RD 85.468	87.62	¥ 88.906	2r 91.224	ND 92.906	MO 95.94	IC [98]	RU 101.07	RN 102.906	106.42	Ag 107.868	Ca 112.41	114.818	5n 118.71	5D 121.76	127.6	126.904
			Period	55	56 P a		72	73	74	75 P o	76	77	78 Df	79	80	81	82 Ph	83	84 P o	85
			6	132.905	Da 137.327		178.49	180.948	183.84	186.207	190.23	192.217	195.078	196.967	200.59	204.383	207.2	208.98	[209]	[210]
			Period	87 Fr	88 Ra															
			7	223	226.03											10				
			LN:			57 La	58 Ce	⁵⁹ Pr	⁶⁰ Nd	Pm	Sm	Eu	Gd Gd	65 Tb	⁶⁶ Dy	Ho	Er	⁶⁹ Tm	Yb	⁷¹ Lu
				ļ		138.906	140.116	140.908	144.242	[145]	150.36	151.964	157.25	158.925	162.5	164.93	167.259	168.934	173.04	174.967
			AC:			Ac	Th	Pa	Ű	Np	Pu	Am	Ĉm	Bk	Cf	Es	Fm	Md	No	Lr
				J		[227]	232.038	231.036	238.029	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
							0	Search	1	how Re:	sults	C Und	lock Pag	e	Reset P	age	Resel	: All		

There are several types of composition searches in PDF-4+. On the "Element" page, shown on the left, there is an empirical formula search, a formula type search (i.e. NaCl), and a composition search based on atomic % or weight % composition. There is also a number of elements search.

> The periodic table search has a point and click interface to add elements or groups of elements in combination.

> Boolean operators "Only, Just, And, Or" can be applied to the search sequence

Example Several ways to search for carbon steel

Search by Mineral Name – Austenite, Martensite Search by Empirical Formula – i.e. Fe15C

Search by Composition (results below) Carbon 5 atomic % with esd of 4 Iron 95 atomic % with esd of 4

PDF #	Status	QM	Atomic %	Common Name	RedCell-a	RedCell-b	RedCell-c
00-023-0298	D	0	C5.00 Fe95.00	Austenite	2.546	2.546	2.546
00-044-1289	Р	С	C7.00 Fe93.00	martensite	2.526	2.526	2.526
00-044-1290	P	С	C2.50 Fe97.50	martensite	2.499	2.499	2.499
00-044-1291	P	С	C3.50 Fe96.50	martensite	2.504	2.504	2.504
00-044-1292	P	С	C4.50 Fe95.50	martensite	2.509	2.509	2.509
00-044-1293	Р	С	C6.00 Fe94.00	martensite	2.516	2.516	2.516
00-052-0512	Р	С	C6.21 Fe93.79	austenite	2.558	2.558	2.558
01-074-5520	P	1	C6.00 Fe94.00		2.558	2.558	2.558
01-074-5521	P	В	C1.00 Fe96.00 Sn3.00		2.502	2.502	2.502
04-007-2377	P	В	C8.26 Fe91.74		4.020	4.020	36.990
04-007-2490	P	В	C4.31 Fe95.69		2.511	2.511	2.511

Note: Searching by composition gets some austenites, but also finds martensite, and also finds some that are not identified.

Sort the Results

PDF #	Status	QM	Atomic %	Common Name	RedCell-a	RedCell-b	RedCell-c	RedCellVol	SG # 🛓	SYS
04-007-2377	P	В	C8.26 Fe91.74		4.020	4.020	36.990	597.77	53	0
00-044-1289	P	С	C7.00 Fe93.00	martensite	2.526	2.526	2.526	12.36	139	Т
00-044-1290	Р	С	C2.50 Fe97.50	martensite	2.499	2.499	2.499	12.00	139	Т
00-044-1291	Р	С	C3.50 Fe96.50	martensite	2.504	2.504	2.504	12.07	139	Т
00-044-1292	Р	С	C4.50 Fe95.50	martensite	2.509	2.509	2.509	12.15	139	Т
00-044-1293	Р	С	C6.00 Fe94.00	martensite	2.516	2.516	2.516	12.23	139	Т
04-007-2490	Р	В	C4.31 Fe95.69		2.511	2.511	2.511	12.17	139	Т
00-023-0298	D	0	C5.00 Fe95.00	Austenite	2.546	2.546	2.546	11.66	225	С
00-052-0512	P	С	C6.21 Fe93.79	austenite	2.558	2.558	2.558	11.84	225	С
01-074-5520	Р	I.	C6.00 Fe94.00		2.558	2.558	2.558	11.84	225	С
01-074-5521	P	В	C1.00 Fe96.00 Sn3.00		2.502	2.502	2.502	12.06	229	С

The results are sorted by space group, by clicking with the mouse at the column heading. The space group indicates 4 different structures, space group numbers 53,139,225 and 229.

Examine an entry candidate

PDF #	Status	QM	Atomic %	Common Name	RedCell-a	RedCell-b	RedCell-c	RedCellVol	SG # 🛓	SYS
04-007-2377	P	В	C8.26 Fe91.74		4.020	4.020	36.990	597.77	53	0
00-044-1289	P	С	C7.00 Fe93.00	martensite	2.526	2.526	2.526	12.36	139	т
00-044-1290	Р	С	C2.50 Fe97.50	martensite	2.499	2.499	2.499	12.00	139	т
00-044-1291	P	С	C3.50 Fe96.50	martensite	2.504	2.504	2.504	12.07	139	т
00-044-1292	P	С	C4.50 Fe95.50	martensite	2.509	2.509	2.509	12.15	139	т
00-044-1293	Р	С	C6.00 Fe94.00	martensite	2.516	2.516	2.516	12.23	139	т
04-007-2490	P	В	C4.31 Fe95.69		2.511	2.511	2.511	12.17	139	т
00-023-0298	D	0	C5.00 Fe95.00	Austenite	2.546	2.546	2.546	11.66	225	С
00-052-0512	P	С	C6.21 Fe93.79	austenite	2.558	2.558	2.558	11.84	225	С
01-074-5520	Р	I.	C6.00 Fe94.00		2.558	2.558	2.558	11.84	225	С
01-074-5521	P	В	C1.00 Fe96.00 Sn3.00		2.502	2.502	2.502	12.06	229	С

Experimental Data [110] zone axis

In this particular case, one can compare the experimental spot pattern to a small set of candidates that match the chemistry, to identify austenite.

PDF 01-074-5520, Austenite

PDF 00-044-1291, Martensite

Long Searches, Long 8 and Fink Searches

The long search, long 8 and Fink searches are all based on the above interplanar distance distribution statistics. Long lines have a much broader distribution than strong lines.

Long Search and Long 8

Various electron diffraction ring and spot patterns taken from the Internet.

Strong lines (or spots) have the highest intensity, long lines (or spots) are those closest to the center of the image – both can be used to identify a material. The exact center of the image, in many cases, is the direct Beam. The shadow of a beam stop is shown in two of the images.

Schematics and photo courtesy of Bruker-AXS. Identification by EVA. Relationship from 3D Debye cones to a 2D diffraction pattern and phase Identification.

Searches

Strong Line Searches have the advantage in that the best counting statistics are based on the strong lines. These are the easiest interplanar spacings to detect in an experiment.

Long Line Searches take advantage of the broader distribution and shifted population of interplanar spacings to low angles (longer interplanar spacings).

Many classes of materials (i.e. clays, zeolites) have characteristic peaks at long d-spacings (next slide).

Note: Since d-spacings are a reflection of the size of the unit cell, similar statistics can be generated for unit cell dimensions. Longer dimensions are more characteristic due to a low population distribution.

Material Characteristics

Long searches would be expected to be more effective for zeolites than for metals and alloys.

Long and strong line searches in PDF-4+.

Searches can be combined.

ng Line	Å esd:	Å L1	Strong Line	å esd:	D1
ensity			I/I-corundum (I/Ic)		
] Not	g/cm³ ESD:	g/cm³ Dreas Dcalc Dstruc	Not	ESD:	
elting Point			R-factor		
Not	ESD:	● °C ◎ °K ◎ °F	Not	ESD:	
Not Black A Blue Brown Color Missing Colorless Gray Green E Metallic Orange Pink Red Violet Violet Yellow T	 And Or 	Not P-4_Hetero_atoms P-4_Hetero_atoms P-5_fused_rings P-membered_rin 1_Hetero_atoms_i 2_fused_rings 2_Hetero_atoms_i 3_fused_rings 3_Hetero_atoms_i 4_fused_rings 4_Hetero_atoms_i 5_fused_rings	:_in_ring(s) ig i_ring(s) :C-C=O in_ring(s) in_ring(s) in_ring(s)	And Or	
nith-Snyder Figure Of Mer	it (SS/FOM)		Database Comments		

This search page, entitled "Miscellaneous" Searches, contains both long and strong searches. It also contains physical property searches that make an effective combination with either interplanar spacing search.

Elemental and Interplanar Spacing Index (EISI)

Ele	ment	t Seleo	ction		Lor	nges	st d	ľs					Cros	s Ref	's
54		(_/		_			J		Name	L			
A) A) A)	High Z Fe Si Fe Si Fe Si Fe Si		13.1 16.7 13.1 16.7 11.5 8.16 10.1 6.88	9 94 9.87 6.67 5 68	Larges 8.3) 6. 8.26 6. 5.77 5. 5.04 4. 4.45 5	t/Recorded 78 6.55 75 6.55 16 4.71 56 4.67	"d" 6.15 4.08 3.90 5.02	5 61 5 58 3.85 3.80	5.50 5.57 3.55 3.44 4.5	5.37 5.33 3.48 3.27 7.41	Formula/Mineral Name Alug (Feg., Silgu) (Al FelSi Al-FedSiQ) (Almandme (Fe,Mg)Al (SiQ) (OH), (Ferogarp 1 (Fe,Mg)Al (SiQ) (OH), (Ferogarp 1	Code HF C C OC	Ratia 2 (150 2.130) 11.5460 0.6826 0.6826	PDF# 330655	CDF# 123/95 034979 107240 211358 014578
A1 A1 A1 A1 A1	Fe Si Fe Si Fe Si Fe Si Fe Si Fe Si	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.30 6.93 9.19 8.97 9.19 8.59 9.30 7.05 8.91 4.72 8.90 4.72	8.23 4.49 5.57 4.68 4.68	6.44 5. 4.42 4. 5.26 4. 4.66 4. 4.63 4.	10 3.19 11 5.16 41 4.27 55 4.21 52 4.43 49 4.45	5 02 4 23 3 82 4 36 4.35	4.91 4.06 3.53 4.00 4.00	4 63 4.00 3.44 3.69 3.89	4.61 3.77 3.29 3.83 3.81	Al, Fe, (Si, Al,)O ₁₂ (OH) ₂ : Antophysic Al, JFe, (Si, Al,)O ₁₂ (OH) ₂ : Antophysic (Al, Mg)Fu, (Si, Al),O ₂ (O, OH) ₂ (OH) ₂ (Al, Mg)Fu, (Si, Al),O ₂ (OH) ₂ (OH) ₂ (OH) ₂ (Al, Fe)(Fe),Mg)(SiAI)O ₁₂ (OH) ₂ (Chlor)	OP AP O MC MC	0.9521 0.5520 0.7753 3.3254 3.3139	310617	024075 808432 007504 002442 005592
41 41 41 41	Po Si Fa Si Fa Si Fa Si Fa Si	0 1 1 1 0 0	8.59 8.53 8.33 7.13 8.31 7.11 8.28 7.69 4.77 4.13	6.29 5.67 5.66 4.51 3.12	4.95 4. 4.69 4. 4.68 4. 4.41 4. 2.92 2.	21 4.65 54 4.44 53 4.43 14 3.92 51 2.49	4.37 4.17 4.16 3.54 2.39	4.30 3.95 3.94 3.52 2.29	4 27 3 57 3.56 3 22 2.13	4 69 3.54 3 54 3 05 2.07	FeyAlgSv;Oty/Sekannaite (FeyAlgSv;Oty/Staurant* Alg(FeyAlgSsigOty/Oty/Staurant* Fe(AlgSv;Otg/Oty/Stauralite (AlgFe)g(Fe,Ca)g(StOg)/Almandiae	OC MC MC OC CI	0 8718 0.4736 0.4736 0.4737 11.6920	310616	709459 021994 104939 030205 024524
AI AI AI AI	Fe Si Fo Si Fo Sm Fe Sm Fe Sm	0	4.75 4.29 4.72 4.09 11.0 5.52 6.66 5.31 6.38 4.92	3.18 3.09 4.88 5.09 4.42	3.04 2. 2.89 2. 4.76 4 4.27 3. 4.28 3.	51 2 56 59 2.47 46 4.07 50 3.39 57 3 29	2.38 2.36 3.68 3.33 3.08	2.15 2.27 3.66 3.27 2.96	2.68 2.71 3.27 2.82 2.82	2.06 2.04 2.94 2.75 2.64	$\begin{array}{l} Al_{1}PaSl_{2}\\ (Fe_{\mathcal{M}}Al_{2}Al_{2}(SlO_{2})_{2}/Almandine, ma^{*}\\ SmFe_{\mathcal{A}}Al_{2}O_{12}\\ SmpAl_{2} \otimes Fe_{2} \\ SmpAl_{2} \otimes Fe_{2} \\ (Al_{2}, {}_{3}AFe_{2}, {}_{4})_{17}Sm_{2} \end{array}$	T) CI H위 H위 H위	1.5651 11.5630 3.9191 1.7864 1.4516	33-0658 33-0021	109289 711571 809972 800413 711023
AI AI AI AI	Fe Sm Fe Sm Fe Sr Fe Ta Fe Tb	o	6 20 4.39 6.18 4.37 11.4 5.70 4.27 4 02 7.39 4.27	4.38 3.09 4.95 3.77 4.18	3.10 2. 2.76 2. 4.84 4. 2.93 2. 3.69 3.	77 2.53 52 2.34 54 4.15 47 2.27 53 2.98	2,34 2,19 3,80 2,14 2,79	2.19 2.18 3.74 2.10 2.77	2.19 2.05 3.35 2.06 2.46	2.07 1.98 3.01 2.01 2.32	AlyFesSin AlyFesSin SirFesAlyOrg AlfeEa AlyFesyTby	TI TI HP HP HP	0.5762 0.5782 3.9874 1.6288 0.4893	34-0400 290045 30-0025	124262 712559 803810 706879 708195
A) A) A) A) A)	Fe Tb Fe Tb Fe Tb Fe Th Fe Th Fe Th		7.39 4.27 6.17 4.36 6.13 4.35 6.25 4.42 4.49 4.09	4.18 3 09 4 33 4.40 3.02	3.69 3. 3.08 2. 3.07 3. 3.13 3. 2.59 2.	53 2.98 76 2.52 36 2.74 12 2.80 24 2.19	2.79 2.33 2.52 2.55 2.05	2.77 2.18 2.51 2.54 1.97	2.46 2.18 2.33 2.35 1.86	2.32 2.06 2.38 2.21 1.70	(Alo _{1.05} Fe _{0.0.21/} 7b ₂ Ai ₀ Fe _{0.15} Ai ₀ Fe _{0.15} Ai ₀ Fe _{0.15} Ai ₀ Fe _{0.2} Th Al ₀ Fe _{0.2} Th	hP Fi Fi Ti HP	0.4893 0.5768 0.5812 0.5741 0.7892	34-0682 34-0344 32-0020 34-1319	712740 712508 709998 122769 124802

This is a page from the EISI Index, published in 1989. It combines elemental analysis selection, shown on the left, with long d-spacing searches, shown in the middle. From the statistics shown on the prior pages, <u>this combination</u> will frequently produce a unique identification. As a printed product, permutation of the elements with >100,000 material choices created practical limitations in size and fonts. The challenge in PDF-4+ was to duplicate the logic, without the space requirement.

Effective Search Strategies with Electron Diffraction Data

 Combining elemental analysis with a search on the experimental data

PDF-4+

General Method – Unknown Identification

Method 1

- Use element and composition searches (unlimited types and numbers of elements)
- Use 3 most intense d-spacings <u>and</u> 3 longest d-spacings to match
- Point and click on the matching entry to compare a full pattern to your data

PDF-4+

General Method – Unknown Identification

Method 2

- Use element and composition searches (unlimited types and numbers of elements)
- Import experimental data into Sleve+
- Automatically match data to the composition search using any of 4 algorithms (long lines, strong lines, strong & long)

General Method

Collect ED Pattern Collect

EDS Data

Search PDF-4+ Using Elemental Data and d-spacings

Produce Candidate List from Search Results Match Candidate Simulated ED Pattern to Experimental Pattern

<u>Options</u>

1) Replace ED pattern with a) EBSD pattern, b) d,I listing, c) Integrated data from a ring scan (photo or CCD), measured unit cell parameters

2) Replace EDS data with a) density, b) composition analysis, c) chemical analysis (use nomenclature search)

3) Replace candidate simulation pattern with candidate EBSD patterns, or 1/d plot

4) Match by candidate comparison to data simulations or use Sieve+ (Hanawalt, Long 8 and Fink searches)

Search by Elemental Composition

PDF-4+ Change the Display Fields

Use the preferences icon to add, delete,

or sort display fields

Help						In this exam	nple
General	Search	PDF Card	Diffractio	n SIeve	e+ El		יסיקי, ר ו
Field Sets						LI, LZ and	L3
[ICDD De	faults			-	are highligh	ted
Available	Fields				Selec	to be added	to
LPF Proto	type Stri	ucture			PDF a	the display	field
L1 L2 L3 Dcalc Dmeas Dstruc I/Ic Melting Pc MP Low MP High R-factor	int		E	>	Chem Comp Empiri D1 D2 D3 SYS Journ Autho	ical Formula ound Name ical Formula al or	
Prompt	for repo eport fie	ort title Ids to page	N.				

70 Fields to Choose From!

PDF-4+

Results to Data Entry to Simulations

Empirical Formula 🔺	L1	L2	L3	D1	D2	D3	Compound Name	SYS	XtlC	Pearson	QM	PDF #
Au3.16 Ba Ge0.84	5.280000	4.255680	3.288050	2.791090	2.325000	2.806560	Barium Gold Germanium	Т	4.650	tl10.00	В	01-074-0014
Au6.32 Ba2 Ge1.68	5.279000	4.255000	2.804900	2.791200	2.324800	2.804900	Barium Germanium Gold	т	4.650	tl10.00	С	00-031-0143
Au6.32 Ba2 Ge1.68	5.280000	4.255680	3.288050	2.791090	2.325000	2.806560	Gold Barium Germanium	т	4.650	114.0.00	I	03-065-2687
Au3 Ba4 Ge20	7.635830	5.399350	4.829330	2.886070	3.117320	1.751780	Barium Gold Germanium	С	10.799	cP54.00	1	04-005-3081

50%

Custom Design Display EISI Index Simulation with PDF-4+

Eleme	ent 3	Long		3 Stro	ong	Nan	ne	Cell	Ρ	ears	on	QM PD
	L	ines		Line	S			Edge	e S	Symbo	ol	
Emp	L1	L2	L3	D1	D2	D3	Comp	SYS	Xt 🔺	Pearson	QM	PDF #
Au	2.350000	2.030000	1.440000	2.350000	1.230000	2.030000	Gold	С	4.064	cF4.00	В	00-001-1174
Au	2.360000	2.040000	1.440000	2.360000	2.040000	1.230000	Gold	С	4.068	cF4.00	В	00-002-1095
Au	2.350000	2.030000	1.440000	2.350000	2.030000	1.230000	Gold	С	4.070	cF4.00	В	00-001-1172
Au	2.349820	2.035000	1.438960	2.349820	2.035000	1.227150	Gold	С	4.070	cF4.00	1	04-003-5615
Au	2.349820	2.035000	1.438960	2.349820	2.035000	1.227150	Gold	С	4.070	cF4.00	1	04-003-7037
Au	2.349870	2.035050	1.439000	2.349870	2.035050	1.227180	Gold	С	4.070	cF4.00	1	04-004-5106
Au	2.349820	2.035000	1.438960	2.349820	2.035000	1.227150	Gold	С	4.070	cF4.00	1	04-004-8456
Au	2.350970	2.036000	1.439670	2.350970	2.036000	1.227750	Gold	С	4.072	cF4.00	1	03-065-8601
Au	2.351550	2.036500	1.440020	2.351550	2.036500	1.228060	Gold	С	4.073	cF4.00	1	01-071-4615
Au	2.354030	2.038650	1.441540	2.354030	2.038650	1.229350	Gold	С	4.077	cF4.00	1	04-001-2616
Au	2.354490	2.039050	1.441830	2.354490	2.039050	1.229590	Gold	С	4.078	cF4.00	1	01-071-3755
Au	2.354430	2.039000	1.441790	2.354430	2.039000	1.229560	Gold	С	4.078	cF4.00	1	04-001-3179
Au	2.354380	2.038950	1.441760	2.354380	2.038950	1.229530	Gold	С	4.078	cF4.00	1	04-002-1170
Au	2.354670	2.039200	1.441930	2.354670	2.039200	1.229680	Gold	С	4.078	cF4.00	1	04-003-2942
Au	2.354550	2.039100	1.441860	2.354550	2.039100	1.229620	Gold	С	4.078	cF4.00	1	04-003-3089
Au	2.354490	2.039050	1.441830	2.354490	2.039050	1.229590	Gold	С	4.078	cF4.00	1	04-003-3368
Au	2.354430	2.039000	1.441790	2.354430	2.039000	1.229560	Gold	С	4.078	cF4.00	1	04-003-7284
Au	2.354320	2.038900	1.441720	2.354320	2.038900	1.229500	Gold	С	4.078	cF4.00	1	04-004-4643
Au	2.354430	2.039000	1.441790	2.354430	2.039000	1.229560	Gold	С	4.078	cF4.00	1	04-004-8502
Au	2.354430	2.039000	1.441790	2.354430	2.039000	1.229560	Gold	С	4.078	cF4.00	1	04-004-9166
Au	2.354430	2.039000	1.441790	2.354430	2.039000	1.229560	Gold	С	4.078	cF4.00	1	04-004-9181
Au	2.354670	2.039200	1.441930	2.354670	2.039200	1.229680	Gold	С	4.078	cF4.00	1	04-005-1700
Au	2.355000	2.039000	1.442000	2.355000	2.039000	1.230000	Gold	С	4.079	cF4.00	S	00-004-0784
Au	2.354980	2.039470	1.442120	2.354980	2.039470	1.229850	Gold	С	4.079	cF4.00	1	01-071-4073

This is an example, using gold, where an "EISI" Index was generated using PDF-4+ and selecting display field preferences. In comparison to the EISI index, the long 8 display has been replaced by a long 3 and strong 3 display. PDF-4+ has an advantage in that any of 70 fields can be displayed and sorted for all entries.

Additional Information

- More examples on how to search using elemental data are given in the tutorial "XRF and SEM-EDS"
- Examples of how to use electron diffraction data simulations and simulation variables are given in the tutorial, *"Electron Diffraction"*
- Examples of how to use Sleve+ for Long 8 and Fink Searches are given in the tutorials, *"Advanced Identification Tools"* and *"Identification PDF-4+ Sleve+"*

Thank you for viewing our tutorial. Additional tutorials are available at the ICDD website (<u>www.icdd.com</u>).

International Centre for Diffraction Data

12 Campus Boulevard

Newtown Square, PA 19073

Phone: 610.325.9814

Fax: 610.325.9823