

1

NON-AMBIENT DATA CALCULATING THERMAL EXPANSION

A REVIEW OF CAPABILITIES

INTRODUCTION

The purpose of this PowerPoint presentation is to demonstrate how to calculate thermal expansion and thermal expansion coefficients using the functions embedded in the Powder Diffraction File.

There are two advantages to using this method versus conventional methods

- 1) The user can combine data from several different authors and publications, including single point temperature measurements, and combine them in a temperature series
- 2) The user can incorporate the quality review analysis performed by the ICDD to select the most precise and accurate data for the analysis.

For both points 1 & 2 the ICDD has created software and index tables to facilitate the measurements. There are temperature series for over 10,000 materials in the PDF-4+ database. The software and index tables are incorporated into all PDF-2 and PDF-4+ products. The software features and applications shown in this presentation were developed in Releases 2013 through 2015.

For future releases we are working on pressure series.

FIRST STEP. USE THE SEARCH MENU FROM THE PDF-4 DATABASE TO SELECT MATERIALS

Ambient is defined as data taken within a range of room temperature. At the ICDD we define ambient as 290 – 310 Kelvin. Non-ambient can be temperatures above or below this range.

The "Environment selection allow the user to choose either pressure data, temperature data or pressure *and* temperature data. The user can also select materials based on their quality evaluation (i.e. Qualit³ Mark)

NON-AMBIENT DATA

Entries that are non-ambient always have the temperature or pressure specified in the editor comment section of a data entry. 1

ICDD editors have flagged identical compounds contained in a temperature series. *If* an entry is part of A temperature series the "Temperature Series" icon will be activated. Activated icons are in bold colors. 2

											- Va	<u> </u>
			Temp (K) PDF	# QM	Chemical Fo	Compound Name	RedCell Vol (Å3)	Author - PR	Journal - PR	Year - PR	Dcalc (g/cm ³)	Dstruc (g/cm³)
			15.0 01-084	-1284 🔍 S	Ti O2	Titanium Oxide	62.15 E	Burdett, J.K., Hughbanks, T., Miller, .	. J.Am. Chem. Soc.	1987	4.27	4.27
	Salact		100.0 04-004	-4337 🔵 S	Ti O2	Titanium Oxide	62.00 F	Restori R., Schwarzenbach D., Sch.	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.28	4.28
	JEIELL		273.0 04-002	-9135 🧡 P	Ti O2	Titanium Oxide	62.38 5	Siratori K., lida S.	J. Phys. Soc. Jpn.	1962	4.254	4.25
			293.0 04-006	-2653 🔶 P	Ti O2	Titanium Oxide	62.42 5	Shannon R.D.	J. Appl. Phys.	1964	4.251	4.25
			293.0 04-006	-2654 🥑 P	Ti O2	Titanium Oxide	62.42 9	Shannon R.D.	J. Appl. Phys.	1964	4.251	4.25
	1		295.0 01-084	-1283 🥥 S	Ti O2	Titanium Oxide	62.42 E	Burdett, J.K., Hughbanks, T., Miller, .	. J. Am. Chem. Soc.	1987	4.251	4.25
			295.0 04-004	-4338 🥥 S	Ti O2	Titanium Oxide	62.38 F	Restori R., Schwarzenbach D., Sch.	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.254	4.25
			296.0 01-080	-2528 🥘 I	Ti O2	Titanium Oxide	62.37 H	enderson, C.M.B., Knight, K.S., Le.	Open Mineral. J.	2009	4.254	4.25
			298.0 00-001	-1292 🥥 B	Ti O2	Titanium Oxide	61.88 H	lanawalt, J., et al.	Anal. Chem.	1938	4.288	
			298.0 00-002	-0494 🥥 O	Ti O2	Titanium Oxide	61.88 H	Kerr.	Econ. Geol.	1932	4.288	
	Temperature Series		298.0 01-072	-7374 🔵 S	Ti O2	Titanium Oxide	63.78	Theisinger, H., Baier, M., Brummer,	Am. Mineral.	2003	4.161	4.16
	remperature benes		298.0 01-071	-4809 😑 I	Ti O2	Titanium Oxide	60.13 V	/egard, L.	Philos. Mag.	1916	4.413	4.41
			298.0 04-016	-0561 🥥 B	Ti O2	Titanium Oxide	62.30	Greenwood G.	Philos. Mag.	1924	4.259	4.26
			298.0 04-014	-1641 H	Ti O2	Titanium Oxide	64.00 L	e Bacq O., Salinas E., Pisch A., Be.	. Philos. Mag.	2006	4.146	4.15
			298.0 01-076	-1938 🥥 S	Ti O2	Titanium Oxide	62.42 M	leagher, E.P., Lager, G.A.	Can. Mineral.	1979	4.251	4.25
			298.0 04-015	-7316 🥥 B	Ti O2	Titanium Oxide	62.73 F	Rasmussen S.E.	Powder Diffr.	2003	4.23	4.23
			298.0 04-006	-2536 💛 P	Ti O2	Titanium Oxide	61.88 E	Bond W.L.	J. Appl. Phys.	1965	4.288	4.29
			298.0 04-006	-3570 😑 P	Ti O2	Titanium Oxide	62.46 A	rmenise M.N., Canall C., De Sario	J. Appl. Phys.	1983	4.249	4.25
			298.0 04-005	-4625 💛 I	Ti O2	Titanium Oxide	62.43 A	brahams S.C., Bernstein J.L.	J. Chem. Phys.	1971	4.25	4.25
			298.0 04-005	-4857 🥚 I	Ti O2	Titanium Oxide	62.45 (Gonschorek W.	Z. Kristallogr.	1982	4.249	4.25
			298.0 04-005	-4858 🥚 I	Ti O2	Titanium Oxide	62.46	Gonschorek W., Feld R.	Z. Kristallogr.	1982	4.248	4.25
			298.0 04-005	-4859 💛 I	Ti O2	Titanium Oxide	62.45 (Sonschorek W., Feld R.	Z. Kristallogr.	-		4.25
			200.0 04.007	4074 0 0	T: 02	Tita aliver Ouida		B.D.L. Medera I.C.	7 Kalakallara		/	
										1/() Entri	2ζ
										± /C		
			X		2							
estrict a	pace Group:				~							
											02, 111	11.
-												TITLE
					Onc	o the sr	nace gr	<u>oun is sele</u>	octed a listir	ng of	all en	trips
	Do you wish to restrict the tempera	ature series to the current PDF entry's space group (1	36)?			c inc sp	Juce Bi	oup is sele		10 01	ancin	င်းကြီးခို
		7 (3F (-										
					In t	ha caria	<u>c will h</u>	a chown t	o the user			

Restrict Space Group (136) Do

(136) Don't Restrict Space Group

1

Selection of the icon will then ask the user if they want to restrict the space group. In this particular case we are looking at TiO_2 Restriction of the space group limits the series to the mineral rutile. Unrestricted space groups would include the TiO_2 polymorphic minerals - rutile, anatase, brookite and akaogiite.

mperat	ure Seri	es (Ti O2 - 01	-080-254	46)				Z <i>i</i>	J E	nunes	
Edit F	ields S	imilarity Inde	x Help								
Ş	1		×								
rences	Open	PDF Card Simu	ulated Pro	ofile							
Temp	(К)	PDF #	QM	Chemical Fo	Compound Name	RedCell Vol (Å3)	Author - PR	Journal - PR	Year - PR	Dcalc (g/cm ³)	Dstruc (g/cm ³)
	15.0	01-084-1284	🔘 S	Ti O2	Titanium Oxide	62.15	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	4.27	4.
	15.0	01-084-1286	🔴 В	Ti O2	Titanium Oxide	67.96	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	3.904	:
	100.0	04-004-4337	🔵 S	Ti O2	Titanium Oxide	62.00	Restori R., Schwarzenbach D., Sch	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.28	4.
	133.0	04-014-5355	🔘 S	Ti O2	Titanium Oxide	122.16	Filatov S.K., Bendeliani N.A., Albert	Dokl. Phys.	2007	4.344	4.
	223.0	04-014-5354	🔘 S	Ti O2	Titanium Oxide	122.20	Filatov S.K., Bendeliani N.A., Albert	Dokl. Phys.	2007	4.343	4.
	273.0	04-002-9135	<u> </u>	Ti O2	Titanium Oxide	62.38	Siratori K., lida S.	J. Phys. Soc. Jpn.	1962	4.254	4.
	290.0	04-007-6246	🔴 В	Ti O2	Titanium Oxide	142.11	Feist T.P., Davies P.K.	J. Solid State Chem.	1992	3.734	3.
	290.15	03-065-6429	01	Ti O2	Titanium Oxide	284.23	Feist, T. P., Davies, P. K.	J. Solid State Chem.	1992	1.867	1.
	293.0	04-014-5353	S	Ti O2	Titanium Oxide	121.95	Filatov S.K., Bendeliani N.A., Albert	Dokl. Phys.	2007	4.352	4.
	293.0	04-006-2653	9 P	Ti O2	Titanium Oxide	62.42	Shannon R.D.	J. Appl. Phys.	1964	4.251	4.
	293.0	04-006-2654	😑 P	Ti O2	Titanium Oxide	62.42	Shannon R.D.	J. Appl. Phys.	1964	4.251	4.
	293.0	04-012-6345	01	Ti O2	Titanium Oxide	104.20	Swamy V., Dubrovinsky L.S., Dubro	Solid State Commun.	2005	5.093	5.
	293.0	04-012-6346	01	Ti O2	Titanium Oxide	100.60	Swamy V., Dubrovinsky L.S., Dubro	Solid State Commun.	2005	5.275	5.
	293.0	04-007-6487	01	Ti O2	Titanium Oxide	137.19	Akimoto J., Gotoh Y., Oosawa Y., N	J. Solid State Chem.	1994	3.868	3.
	293.0	04-007-6488	9 P	Ti O2	Titanium Oxide	256.66	Akimoto J., Gotoh Y., Oosawa Y., N	J. Solid State Chem.	1994	4.135	4.
	293.0	04-014-5762	S	Ti O2	Titanium Oxide	68.13	Leinekugel Le Cocq Errien A.Y., De	J. Solid State Chem.	2007	3.895	3.
	293.0	04-014-5764	S	Ti O2	Titanium Oxide	68.14	Leinekugel Le Cocq Errien A.Y., De	J. Solid State Chem.	2007	3.894	3.
	295.0	01-070-3463	01	(Ti, Cr, Fe,	Titanium Chromium Iron	708.51	Wang, LP., Rouse, R.C., Essene,	Am. Mineral.	2000		4.
	295.0	01-084-1283	S	Ti O2	Titanium Oxide	62.42	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	4.251	4.
	295.0	01-084-1285	S	Ti O2	Titanium Oxide	68.13	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	3.895	3.
	295.0	01-081-9508	01	Ti O2	Titanium Oxide	552.50	Mamiya, M., Kataoka, K., Kikuchi, S	J. Phys. Chem. Solids	2012	3.842	3.
	295.0	04-004-4338	S	Ti O2	Titanium Oxide	62.38	Restori R., Schwarzenbach D., Sch	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.254	4.
	296.0	01-080-2528	01	Ti O2	Titanium Oxide	62.37	Henderson, C.M.B., Knight, K.S., Le	Open Mineral, J.	2009	4.254	4.
	298.0	00-019-1370	🔴 В	Ti O2	Titanium Oxide	121.38	McQueen, Jamieson, Marsh.	Science	1967	4.372	
	298.0	00-033-1381	01	Ti O2	Titanium Oxide	418.53	Liu, L.	Science	1978	5.072	
	298.0	04-007-3644	P	Ti O2	Titanium Oxide	104.87	Sato H., Endo S., Sugiyama M., Kike	Science	1991	5.061	5.
	298.0	00-048-1278	B	Ti O2	Titanium Oxide	104.87	Sato, H., Endo, S., Sugiyama, M., Ki	Science	1991	5.061	

								ting 7.	5.2-	11144	
Temp (K)	PDF #	QM	Chemical Fo	Compound Name	RedCell Vol (Å3)	Author - PR	Journal - PR	Year - PR	Dcalc (g/cm ³)	Dstruc (g/cm ³)	
		🔾 S				Burdett, J.K., Hughbanks, T., Miller,			4.27	4.27	
100.0	04-004-4337	🔵 S	Ti O2	Titanium Oxide	62.00	Restori R., Schwarzenbach D., Sch	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.28	4.28	
273.0	04-002-9135	<u> </u>	Ti O2	Titanium Oxide	62.38	Siratori K., lida S.	J. Phys. Soc. Jpn.	1962	4.254	4.25	
293.0	04-006-2653	<u> </u>	Ti O2	Titanium Oxide	62.42	Shannon R.D.	J. Appl. Phys.	1964	4.251	4.25	1
293.0	04-006-2654	<u> </u>	Ti O2	Titanium Oxide	62.42	Shannon R.D.	J. Appl. Phys.	1964	4.251	4.25	
295.0	01-084-1283	🔵 S	Ti O2	Titanium Oxide	62.42	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	4.251	4.25	FRACI
295.0	04-004-4338	🔵 S	Ti O2	Titanium Oxide	62.38	Restori R., Schwarzenbach D., Sch	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.254	4.25	
296.0	01-080-2528	<u> </u>	Ti O2	Titanium Oxide	62.37	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.254	4.25	
298.0	00-001-1292	🥚 В	Ti O2	Titanium Oxide	61.88	Hanawalt, J., et al.	Anal. Chem.	1938	4.288		
298.0	00-002-0494	0 0	Ti O2	Titanium Oxide	61.88	Kerr.	Econ. Geol.	1932	4.288		
298.0	01-072-7374	🔵 S	Ti O2	Titanium Oxide	63.78	Theisinger, H., Baier, M., Brummer,	Am. Mineral.	2003	4.161	4.16	
298.0	01-071-4809	<u> </u>	Ti O2	Titanium Oxide	60.13	Vegard, L.	Philos. Mag.	1916	4.413	4.41	
298.0	04-016-0561	🔴 В	Ti O2	Titanium Oxide	62.30	Greenwood G.	Philos. Mag.	1924	4.259	4.26	
298.0	04-014-1641	н	Ti O2	Titanium Oxide	64.00	Le Bacq O., Salinas E., Pisch A., Be	Philos. Mag.	2006	4.146	4.15	
298.0	01-076-1938	🔵 S	Ti O2	Titanium Oxide	62.42	Meagher, E.P., Lager, G.A.	Can. Mineral.	1979	4.251	4.25	_
298.0	04-015-7316	🥚 В	Ti O2	Titanium Oxide	62.73	Rasmussen S.E.	Powder Diffr.	2003	4.23	4.23	
298.0	04-006-2536	<u> </u>	Ti O2	Titanium Oxide	61.88	Bond W.L.	J. Appl. Phys.	1965	4.288	4.29	
298.0	04-006-3570	0 P	Ti O2	Titanium Oxide	62.46	Armenise M.N., Canall C., De Sario	J. Appl. Phys.	1983	4.249	4.25	
298.0	04-005-4625	01	Ti O2	Titanium Oxide	62.43	Abrahams S.C., Bernstein J.L.	J. Chem. Phys.	1971	4.25	4.25	
298.0	04-005-4857	01	Ti O2	Titanium Oxide	62.45	Gonschorek W.	Z. Kristallogr.	1982	4.249	4.25	
298.0	04-005-4858	<u> </u>	Ti O2	Titanium Oxide	62.46	Gonschorek W., Feld R.	Z. Kristallogr.	1982	4.248	4.25	
298.0	04-005-4859	<u> </u>	Ti O2	Titanium Oxide	62.45	Gonschorek W., Feld R.	Z. Kristallogr.		1	4.25	
200.0	04 007 4074	A .C	T: 00	Titanai un Ouida	CO. CO.	LINE LANDON MANAGEMENT	7. Kaladallaran			1.24	

170 Entries

Restrict Space Group?

Do you wish to restrict the temperature series to the current PDF entry's space group (136)?

Restrict Space Group (136) Don't Restrict Space Group

х

Once the entries are tabulated in a preference data any column can be plotted. For example, 1 and 2 show the table and quality distributions plotted for each collection.

)										
-	phe	d Fields								
File	Edit	Help								
	110	£								
	100									
	90									
	80)							
	70									
ts	60									
Т	50	~~~~~								
	40									
	30							1		
	20									
	10									·····
	0									
		Star	Rietveld	Indexed	Calculated	Prototyping	Blank	Low- Precision	Hypothetic al	
						QM				1.1
				Temperat	ture Series (T	i O2 - 01-080-2	546)			1000

Edit Fields	Similarity Inde	x Help								
S	6	×								
ferences Open	PDF Card Simi	ulated Pr	ofile							
Temp (K)	PDF #	QM	Chemical Fo	Compound Name	RedCell Vol (Å3)	Author - PR	Journal - PR	Year - PR	Dcalc (g/cm ³)	Dstruc (g
15.0	01-084-1284	🔘 S	Ti O2	Titanium Oxide	62.15	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	4.27	
15.0	01-084-1286	🔴 В	Ti O2	Titanium Oxide	67.96	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	3.904	
100.0	04-004-4337	S	Ti O2	Titanium Oxide	62.00	Restori R., Schwarzenbach D., Sch	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.28	
133.0	04-014-5355	🔘 S	Ti O2	Titanium Oxide	122.16	Filatov S.K., Bendeliani N.A., Albert	Dokl. Phys.	2007	4.344	
223.0	04-014-5354	S	Ti O2	Titanium Oxide	122.20	Filatov S.K., Bendeliani N.A., Albert	Dokl. Phys.	2007	4.343	
273.0	04-002-9135	😐 P	Ti O2	Titanium Oxide	62.38	Siratori K., lida S.	J. Phys. Soc. Jpn.	1962	4.254	
290.0	04-007-6246	🔴 В	Ti O2	Titanium Oxide	142.11	Feist T.P., Davies P.K.	J. Solid State Chem.	1992	3.734	
290.15	03-065-6429	<u> </u>	Ti O2	Titanium Oxide	284.23	Feist, T. P., Davies, P. K.	J. Solid State Chem.	1992	1.867	
293.0	04-014-5353	🔘 S	Ti O2	Titanium Oxide	121.95	Filatov S.K., Bendeliani N.A., Albert	Dokl. Phys.	2007	4.352	
293.0	04-006-2653	😐 P	Ti O2	Titanium Oxide	62.42	Shannon R.D.	J. Appl. Phys.	1964	4.251	
293.0	04-006-2654	😐 P	Ti O2	Titanium Oxide	62.42	Shannon R.D.	J. Appl. Phys.	1964	4.251	
293.0	04-012-6345	<u> </u>	Ti O2	Titanium Oxide	104.20	Swamy V., Dubrovinsky L.S., Dubro	Solid State Commun.	2005	5.093	
293.0	04-012-6346	<u> </u>	Ti O2	Titanium Oxide	100.60	Swamy V., Dubrovinsky L.S., Dubro	Solid State Commun.	2005	5.275	
293.0	04-007-6487	<u> </u>	Ti O2	Titanium Oxide	137.19	Akimoto J., Gotoh Y., Oosawa Y., N	J. Solid State Chem.	1994	3.868	
293.0	04-007-6488	🕘 P	Ti O2	Titanium Oxide	256.66	Akimoto J., Gotoh Y., Oosawa Y., N	J. Solid State Chem.	1994	4.135	
293.0	04-014-5762	🔘 S	Ti O2	Titanium Oxide	68.13	Leinekugel Le Cocq Errien A.Y., De	J. Solid State Chem.	2007	3.895	
293.0	04-014-5764	🔘 S	Ti O2	Titanium Oxide	68.14	Leinekugel Le Cocq Errien A.Y., De	J. Solid State Chem.	2007	3.894	
295.0	01-070-3463	<u> </u>	(Ti, Cr, Fe,	Titanium Chromium Iron	708.51	Wang, LP., Rouse, R.C., Essene,	Am. Mineral.	2000		
295.0	01-084-1283	S	Ti O2	Titanium Oxide	62.42	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	4.251	
295.0	01-084-1285	S	Ti O2	Titanium Oxide	68.13	Burdett, J.K., Hughbanks, T., Miller,	J. Am. Chem. Soc.	1987	3.895	
295.0	01-081-9508	<u> </u>	Ti O2	Titanium Oxide	552.50	Mamiya, M., Kataoka, K., Kikuchi, S	J. Phys. Chem. Solids	2012	3.842	
295.0	04-004-4338	🕘 S	Ti O2	Titanium Oxide	62.38	Restori R., Schwarzenbach D., Sch	Acta Crystallogr., Sec. B: Struct. Sci.	1987	4.254	
296.0	01-080-2528	<u> </u>	Ti O2	Titanium Oxide	62.37	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.254	
298.0	00-019-1370	🔴 В	Ti O2	Titanium Oxide	121.38	McQueen, Jamieson, Marsh.	Science	1967	4.372	
298.0	00-033-1381	<u> </u>	Ti O2	Titanium Oxide	418.53	Liu, L.	Science	1978	5.072	
298.0	04-007-3644	9 P	Ti O2	Titanium Oxide	104.87	Sato H., Endo S., Sugiyama M., Kike	Science	1991	5.061	
298.0	00-048-1278	🔴 В	Ti O2	Titanium Oxide	104.87	Sato, H., Endo, S., Sugiyama, M., Ki	Science	1991	5.061	

PDF DATABASES

ICDD databases contain a substantial amount of non-ambient data. New data are added every year from the world literature sources. New temperature data series are added each year.

Release 2015: PDF-4+

Release 2016: PDF-4/Organics

- 327,085 Ambient
- 5,491 Pressure Data
- 32,566 Temperature Data
 - >300 K 11,785 Entries
 - 280 K < 20,569 Entries

- 312,068 Ambient
- 1,096 Pressure Data
- 188,581 Temperature Data
 - >300 K 2,519
 - 280 K < 185,531

DATA MINING

Compound Name (Common, Mineral, Zeolite)

Temperature of Data Collection

Quality Mark

Space Group

Once the temperature series icon is selected A table will be presented to the user. The user has already selected a material and the space group. By using the Preferences icon at the top of the temperature series display 1 the user can select a large number of data types that they wish to display in a temperature series table.

		1 🖡 Temperature Series (Ti O2 - 01-080-2534)
Crystallegraphy:		File Edit Fields Similarity Index Help
Crystallography	🚊 🖆 Reference	
SVS	Title - PR	
SPCP	Author - PR	Preferences Open PDF Card Simulated Profile
Superspace Group		
Pearson Symbol	Vear - PP	Chemistry
Pearson Symbol w/o H	CAS Number - PR	Empirical Formula
Prototype Structure [Formula Or	der]	
Prototype Structure [Alpha Orde	rl	
LPF Prototype Structure [Formul	a Order]	Mineral Name
LPF Prototype Structure [Alpha (Order]	Common Name
-XtlCell a (Å)		Weight %
		Atomic %
XtlCell c (Å)		#Flem
XtlCell a (°)	🖻 🌾 📁 Diffraction	
XtlCell β (°)	D1 (Å)	Zeolite Classification
····XtlCell γ (°)	D2 (Å)	
XtlCell c/a	D3 (Å)	
XtlCell a/b	D4 (Å)	
XtlCell c/b	D5 (Å)	C Physical Descention
XtlCell Vol (ų)	D6 (Å)	Mp Law 40
XtlCell Z	D7 (Å)	MP LOW (K)
RedCell a (Å)	D8 (Ă)	MP High (K)
RedCell b (Å)	D9 (Ă)	Avg, Melting Point (K)
RedCell c (Å)	D10 (A)	Difference (g/cm ²)
RedCell a (°)	L1 (Å)	
RedCell β (°)	L2 (A)	Detrus (g/cm ³)
RedCell γ (°)	L3 (A)	·····Dstruc (g/cm²)
AuthCell a (Å)		
…AuthCell b (Å)	L5 (A)	
…AuthCell c (Å)		
…AuthCell a (°)	L7 (A)	
AuthCell β (°)		V
AuthCell γ (°)	L9 (A)	
AuthCell c/a	L10 (A)	
AuthCell a/b		8
AuthCell c/b	R-factor	
AuthCell Vol (ų)	SS/FOM	
AuthCell MolVol		
AuthCell Z		

PREFERENCE TABLE

9

With PDF-4+ the user has a choice of 116 display fields, for PDF-2 the user has a choice of 48 display fields, and for PDF/Organics the user has a choice of 95 display fields. Which fields should you select ?

Formula and Space Group

To have a measurement of thermal volume expansion, the user should limit themselves to a single material. This is usually done by selecting a specific chemical formula and space group. The space group typically, *but not always*, separates out polymorphic forms (materials of different structure, same formula). To be safe the user may also want to check common and mineral names for polymorphism, where the materials would have different names or designations.

Reduced Cell Volume, Temperature

To calculate a thermal volume expansion a volumetric measurement is required as a function of temperature. We prefer reduced cell volumes since they are standardized, but crystal cell volumes and author cell volumes can also be user selected. If the user wants to check thermal anisotropy (different expansion in different directions) then they can select a unit cell edge (9 choices – 3 axes for 3 systems), or a specific indexed d-spacing (20 choices). Temperatures are available in Fahrenheit, Celsius or Kelvin.

Quality Mark

The ICDD editors perform over 100 quality checks and summarize the output in the quality mark. The highest quality marks are also coded green. The user may want to delete low quality data and/or hypothetical data from an analysis. Older data typically have lower quality marks since the available equipment were not as precise and international calibration standards were not commonly available before the 1980's.

Author and Reference

Selection of author and reference lets the user know how many publications are used in the analysis and which data entries are associated with the same series of measurements.

PREFERENCES TABLE FOR TEMPERATURE SERIES

1	Temperatu	ire Seri	ies (Ti O2 - 01	-080-254	16)							
Fil	e Edit Fi	el	imilarity Inde	ex Help								
				~~								
			1	2	-							
Pre	eferences			ulated Pro	ofile		イト	Z				
	Temp ()	\sim	F	QM	Chemical Fo	Compound Name	Real Vol (Author - PR	Journal - PR	Year - PR	Dcalc (g/cm ³)	Dstruc (g/cm ³)
IF		300.0	04-008-7810	<u>ө</u> в	Ti O2	Titanium Oxide	62.44	Swope R.J., Smyth J.R., Larson A.C.	Am. Mineral.	1995	4.25	4.2
		300.0	04-008-7811	0 B	Ti O2	Titanium Oxide	62.37	Swope R.J., Smyth J.R., Larson A.C.	Am, Mineral,	1995	4.255	4.3
		300.0	04-002-2748	01	Ti O2	Titanium Oxide	62.48	Kim D., Enomoto N., Nakagawa Z.,	J. Am. Ceram. Soc.	1996	4.247	4.3
		300.0	01-071-4513	Н	Ti O2	Titanium Oxide	62.20	Fukuda, K., Fuiii, I., Kitoh, R.	Acta Crystallogr., Sec. B: Struct. Sci.	1993	4.266	4.3
		300.0	04-008-8142	01	Ti O2	Titanium Oxide	62.40	Seki H., Ishizawa N., Mizutani N., K	Yoqyo Kyokaishi (J. Ceram. Assoc	1984	4.252	4.3
		366.0	01-080-2529	01	Ti O2	Titanium Oxide	62.56	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.241	4.3
		400.0	01-075-6234	н	Ti O2	Titanium Oxide	62.45	Fukuda, K., Fujii, I., Kitoh, R.	Acta Crystallogr., Sec. B: Struct. Sci.	1993	4.249	4.3
		459.0	01-080-2530	01	Ti O2	Titanium Oxide	62.75	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.228	4.3
		520.0	04-008-8141	01	Ti O2	Titanium Oxide	62.78	Seki H., Ishizawa N., Mizutani N., K	Yoqyo Kyokaishi (J. Ceram. Assoc	1984	4.227	4.3
		523.0	04-008-7848	S	Ti O2	Titanium Oxide	62.75	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.229	4.3
		553.0	01-080-2531	01	Ti O2	Titanium Oxide	62.89	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.219	4.3
		573.0	01-076-1939	S	Ti O2	Titanium Oxide	62.84	Meagher, E.P., Lager, GA.	Can. Mineral.	1979	4.222	4.3
		630.0	04-008-8140	01	Ti O2	Titanium Oxide	62.91	Seki H., Ishizawa N., Mizutani N., K	Yogyo Kyokaishi (J. Ceram. Assoc	1984	4.218	4.3
		646.0	01-080-2532	01	Ti O2	Titanium Oxide	63.04	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.209	4.3
		733.0	04-008-7849	S	Ti O2	Titanium Oxide	63.15	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.202	4
		739.0	01-080-2533	01	Ti O2	Titanium Oxide	63.20	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.199	4
		786.0	01-080-2534	01	Ti O2	Titanium Oxide	63.26	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.194	4.1
		790.0	04-008-8139	01	Ti O2	Titanium Oxide	63.21	Seki H., Ishizawa N., Mizutani N., K	Yogyo Kyokaishi (J. Ceram. Assoc	1984	4.198	4
		832.0	01-080-2535	01	Ti O2	Titanium Oxide	63.35	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.188	4.1
		873.0	01-076-1940	🔘 S	Ti O2	Titanium Oxide	63.43	Meagher, E.P., Lager, GA.	Can. Mineral.	1979	4.183	4.1
		879.0	01-080-2536	01	Ti O2	Titanium Oxide	63.43	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.183	4.1
		926.0	01-080-2537	01	Ti O2	Titanium Oxide	63.50	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.179	4.1
		940.0	04-008-8138	01	Ti O2	Titanium Oxide	63.52	Seki H., Ishizawa N., Mizutani N., K	Yogyo Kyokaishi (J. Ceram. Assoc	1984	4.177	4.1
		943.0	04-008-7850	0 S	Ti O2	Titanium Oxide	63.54	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.176	4.1
		972.0	01-080-2538	01	Ti O2	Titanium Oxide	63.60	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.172	4.1
		1000.0	04-008-1589	9 P	Ti O2	Titanium Oxide	63.81	Afir A., Achour M., Saoula N.	J. Alloys Compd.	1999	4.159	4.1
		1019.0	01-080-2539	01	Ti O2	Titanium Oxide	63.67	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.167	4.1
		1065.0	01-080-2540	01	Ti O2	Titanium Oxide	63.76	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.161	4.1
		1112.0	01-080-2541	01	Ti O2	Titanium Oxide	63.85	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.156	4.1
		1145.0	04-008-8137	01	Ti O2	Titanium Oxide	63.88	Seki H., Ishizawa N., Mizutani N., K	Yogyo Kyokaishi (J. Ceram. Assoc	1984	4.154	4.1
		1159.0	01-080-2542	01	Ti O2	Titanium Oxide	63.91	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.152	4.1
		1163.0	04-008-7851	S	Ti O2	Titanium Oxide	63.92	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.151	4.1
		1173.0	01-076-1941	S	Ti O2	Titanium Oxide	63.82	Meagher, E.P., Lager, GA.	Can. Mineral.	1979	4.158	4.1
		1205.0	01-080-2543	01	Ti O2	Titanium Oxide	64.00	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.146	4.1
		1280.0	04-008-8136	01	Ti O2	Titanium Oxide	64.19	Seki H., Ishizawa N., Mizutani N., K	Yogyo Kyokaishi (J. Ceram. Assoc	1984	4.134	4.1
		1299.0	01-080-2544	01	Ti O2	Titanium Oxide	64.14	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.137	4.1
		1333.0	04-008-7852	S	Ti O2	Titanium Oxide	64.26	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.129	4.1
		1392.0	01-080-2545	01	Ti O2	Titanium Oxide	64.33	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.125	4.1
		1463.0	04-008-7853	🔵 S	Ti O2	Titanium Oxide	64.50	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.114	4.1
		1485.0	01-080-2546	01	Ti O2	Titanium Oxide	64.48	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.115	4.1
		1578.0	01-080-2547	01	Ti O2	Titanium Oxide	64.60	Henderson, C.M.B., Knight, K.S., Le	Open Mineral. J.	2009	4.107	4.1
		1623.0	04-008-7854	🔵 S	Ti O2	Titanium Oxide	64.77	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.097	4
		1753.0	04-008-7855	🔵 S	Ti O2	Titanium Oxide	64.99	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.083	4.(
		1883.0	04-008-7856	01	Ti O2	Titanium Oxide	65.26	Sugiyama K., Takeuchi Y.	Z. Kristallogr.	1991	4.066	4.(

Rutile Space Group 136 Temperature of Data Collection > 300 K

ResultsVariable Quality DataT range300-1883 KPublications1984 to 20098 publications

Anything on this form can be plotted. In this case we plot temperature 1 versus reduced cell volume 2

PLOTS

Show Linear Regression Show Quadratic Regression Include Ambient Entries Mouse Window Opens Points Font Undo Last Zoom Reset View Copy About JFreeChart

To separate the two groups of data, there is an options menu, activated by a right mouse click on the graph that allows the user to remove or include all ambient data. Individual entries can be Removed by removing rows in the preference table.

With common materials, such as rutile, there is often a large amount of data because of the engineering applications of the material and this plot can exhibit complex behavior because of multiple variables. In addition the number of ambient determinations may overwhelm non-ambient determinations In this graph there appears to be two groups of data.

This appear to be the temperature series we are interested in where volume is changing as a function of temperature.

There is a large number of ambient determinations where the volume is changing. By clicking on any point the data entry can be viewed . The Editors comment shows that some of these data are from a pressure series. Additional data points represent samples that were annealed for a long period of time, cooled, and then measured at room temperature.

11

What about poor quality data ?

Sort preferences by quality mark

Highlight only high quality data

Use menu to remove ambient entries

Graph temperature vs reduced cell volume

<u>Data Sets</u>	Determinations	<u>R²</u>	<u>Range</u>
All data	170 points		
Remove Ambient (8 publications)	47 points	99.3	0-1883
Remove Poor Quality (7 publications)	43 points	99.4	0-1883
Remove Prototype (6 publications)	41 points	99.5	0-1883
Remove lowest temps (5 publications)	39 points	99.7	300-1883
🕅 Graphed Fields			

DATA

560

540

460

280

The patterns can

Once a set of data have been reviewed for the analysis and placed in the Preferences Table, we can also add additional display elements and plot directional thermal expansion along a lattice plane or cell axis.

Temperature Series (Ti O2 - 01-080-2546) - Note: 131 entries removed by user
 Linear Regression: y = 2.9488 + 3.25E-5x, R² = 9.96E-1

- Linear Regression: y = 3.2394 + 2.75E-5x, R² = 9.94E-1

 Table 4.
 Thermal Expansion Coefficients (Units 10⁻⁶/Degree) for Unit Cell Parameters and T-O Bondlengths for Rutile and Geikielite (this work) and Published Data for Rutile

	α _a	ac	$\alpha_{ m v}$	a _{Ti-Ola}	a _{Ti-O1b}	(A _{Mg-Ola}	$lpha_{ m Mg-O1b}$
Rutile							
This work	8.25	10.86	27.35	2.36	19.3		
Meagher & Lager [13]	7.4	10.4	25.2	8.7	7.4		
Burdett et al. [14]				4.9	5.7		
Sugiyama & Takeuchi [15]	8.9	11.1	28.9	8.4(3)	11.5(3)		
Seki et al. [16]	8.64	11.63	28.9				
Rao <i>et al.</i> [18]	7.25	8.82	23.3				
Merz et al. [19]	8.34	10.77	27.5				
Taylor [20]	7.61	9.87	25.1				
Geikielite		l		α _{Ti-O1}	α _{Ti-O7}	α _{Mg-O1}	α _{Mg-O4}
This work	10.6	13.6	34.8	10.90	12.7	-8.2	26.0

The Open Mineralogy Journal, 2009, 3, 1-11

Open Access

CTION DATA

Published values for the thermal expansion. Are there really 7 values or just 1 ?

Temperature Dependence of Rutile (TiO₂) and Geikielite (MgTiO₃) Structures Determined Using Neutron Powder Diffraction

C.M.B. Henderson^{1,2,*}, K.S. Knight³ and A.R. Lennie²

¹STFC Daresbury Laboratory, Warrington, WA4 4AD; ²School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester M13 9PL and ³ISIS, STFC Rutherford-Appleton Laboratory, Didcot, Oxford OX11 0QX, UK

For a solid, we can ignore the effects of pressure on the material, and the volumetric thermal expansion coefficient can be written:

 $\alpha_v = 28.0 \text{ ppm}$

$$\alpha_V = \frac{1}{V} \frac{dV}{dT}$$

where V is the volume of the material, and dV/dT is the rate of change of that volume with temperature.

Rutile

High quality experimental data used exclusively

Single value representing five publications and 39 entries

17

 Table 4.
 Thermal Expansion Coefficients (Units 10⁻⁶/Degree) for Unit Cell Parameters and T-O Bondlengths for Rutile and Geikielite (this work) and Published Data for Rutile

		α _a	ac	$\alpha_{ m v}$	a _{Ti-Ola}	α _{Ti-O1b}	(A _{Mg-Ola}	$lpha_{ m Mg-O1b}$
	Rutile							
	This work	8.25	10.86	 27.35	2.36	19.3		
	Meagher & Lager [13]	7.4	10.4	25.2	8.7	7.4		
	Burdett et al. [14]				4.9	5.7		
	Sugiyama & Takeuchi [15]	8.9	11.1	28.9	8.4(3)	11.5(3)		
	Seki <i>et al.</i> [16]	8.64	11.63	28.9				
T	Rao <i>et al.</i> [18]	7.25	8.82	 23.3				
	Merz et al. [19]	8.34	10.77	27.5				
	Taylor [20]	7.61	9.87	25.1				
	Geikielite		l		α _{Ti-O1}	α _{Ti-O7}	$\alpha_{\rm Mg-O1}$	$lpha_{ m Mg-O4}$
	This work	10.6	13.6	34.8	10.90	12.7	-8.2	26.0

The Open Mineralogy Journal, 2009, 3, 1-11

Open Access

CTION DATA

Temperature Dependence of Rutile (TiO₂) and Geikielite (MgTiO₃) Structures Determined Using Neutron Powder Diffraction

C.M.B. Henderson^{1,2,*}, K.S. Knight³ and A.R. Lennie²

¹STFC Daresbury Laboratory, Warrington, WA4 4AD; ²School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester M13 9PL and ³ISIS, STFC Rutherford-Appleton Laboratory, Didcot, Oxford OX11 0QX, UK

High quality data used in the ICDD analysis

THERMAL EXPANSION OF CHEMICAL BONDS

In order to understand the nature of chemical bonding and phase transitions some scientists like to examine the thermal expansion of specific covalent and ionic bonds.

This is possible in PDF-4+, PDF-4/Minerals and PDF-4/Organics because these databases also have substantial populations of single crystal structures with calculated bond distances. However we have not automated the process with embedded software applications or index tables so more steps are required.

The user needs to select entries with atomic coordinates 1

and then look at the bond distances in the individual entries.

1

In the specific case for rutile, *most* of the 39 entries previously selected contain atomic coordinates.

For any entries with atomic coordinates

ANX: AX2. LPF Collection Code: 2041128. Melting Point: 2123 K. Polymorphism/Phase Transition: rutile. Sample Preparation: Compound Preparation: crystals grown by Czochralski method. Temperature Factor: Reported Anisotropic temperature factors (in Beta) were converted to B. Temperature of Data Collection: 733 Unit Cell Data Source: Single Crystal.

1

3

2

The above entry is part of the rutile temperature series Where the temperature series icon is activated and the temperature of data collection was 733 K. The entry also has an activated 3D icon and a bonds icon

From the bond distances we can create a table of distances versus temperatures (not automated)

2

3

Ti O2 - 04-008-7849				
dit Help				
Central Atom(s):	Atom1	Atom2	Count	d1,2 (Å)
[All Atoms]	0	Ti	1	1.9916
Eined Size Coheree	Ti	0	2	1.9916
Pixed Size Spheres	0	Ti	2	1.9534
dmin (Å): 0.010	Ti	0	4	1.9534
dmax (

Ti-O bond distances at 733 K

🗯 Ti O2 - 04-008-7847 Edit Help Central Atom(s): Atom 1 d1,2 (Å) Atom2 Count [All Atoms] 2 1.9808 Ti 1 1.9808 Fixed Size Spheres O 4 1.9470 Ti 2 1.9470 dmin (Å): 0.010

For reference, same authors work, Ti-O bond distances at room temp.

CORUNDUM

86.5

86.0 85.5

600

Temperature Series (Al2 03 - 04-015-8609)

1.000

1.200

1.600

Temp (k

1.800

2.000

This series of data plots was generated in about 5 minutes total time. **Top left:** All data from corundum in the temperature series, 96 entries Middle: All ambient temperature data removed, 13 entries. Bottom right: All low quality, hypothetical and prototype data removed. Ambient data from NIST SRM 674, 674a added as well as data from NBS Monograph 539 and NBS special publications. These were all high purity materials and the measurement were calibrated. Quality marks and editors comments were used in the selection. All remaining data are from S and I quality references. The analysis used 9 reference publications and 20 entries.

SUMMARY – THERMAL EXPANSION

In this presentation we demonstrated how numerous physical constants can be calculated from temperature series data – this includes lattice expansion, volume expansions, lattice plane expansion and bond expansions.

Applications and index tables have been used assist the user and facilitate the calculations

A suite of graphics programs enable the data to be graphed and plotted

The methods described are unique because they embed the unique quality review system developed by the ICDD, enabling the best data to be used in the analysis.

As part of ICDD's editorial processes the data employed by the method are continuously updated and new materials are added every year.