

Sleve+ Introduction

- Sleve+ is a Plug-In module integrated in the PDF-4 products. Sleve+ is licensed separately at an additional cost except for the PDF-4/Organics database.
 Sleve+ will activate for a free 30-day trial period or until the product is registered. A license for Sleve+ may be purchased along with a PDF-4 license or following the free 30-day trial period.
- Sleve+ accepts user data and searches the ICDD reference databases (PDF-4+, Organics, and Minerals) for comparison. There are several hundred thousand entries for both PDF-4+ and Organic databases. Therefore, various methods, especially the newly implemented features and improvements listed below are used to ensure efficient searches to obtained the accurate matches.
 - New Similarity Index with normalized R index
 - New data processing menu for background subtraction, Ka2 stripping, smoothing, and peak finding
 - New Matches Filter with Common Filters of Primary Patterns or Mineral Related or Common Phases
 - Instant display of overlapping input and reference patterns
- The matched results depend on the criteria and methods specified. This tutorial demonstrates the available methods and the operational procedures of Sleve+.

SIeve+ Purpose

Sleve+ will identify patterns of various X-ray powder diffraction (XRPD) data files:

- **1.** Single phase XRPD patterns
- 2. Multi-phase XRPD patterns
- **3.** Data file containing only XRPD peaks (*.xml)
- 4. Raw instrumental and/or converted data file formats:

ICDD	(*.csv, *.prn, *. *.pd3)
CIF	(*.cif)
X-Y	(*.xrd)
GSAS	(*.gsas, *.gss, *.gsa, *.raw, *.dat)
Bruker	(*.uxd)
MDI	(*.mdi)
PANalytical	(*.xrdml, *.udf)
Scintag	(*.ard)
Sietronics	(*.cpi)

SIeve+ Methods

There are different search methods and match criteria used to get accurate results. They include:

- Hanawalt with the option of 3 rotations This uses the strongest line for the search. The rotation involves up to the 3 strongest lines
- 2. Fink with the option of 8 rotations This uses the longest of the 8 strongest lines for the search. The rotation involves up to the 8 strongest lines.
- **3.** Eight largest d-spacings with the option of 8 rotations This method uses the largest of the 8 longest lines for the search.
- 4. Search window and Match window are options for user to specify the error margin.
- 5. Weighted GOM, Pattern GOM, and Similarity Index are quantities used to rank the matched reference patterns.
- 6. Data file import processing options Manually add/delete points or use Cubic Spline function for background subtraction; Add diffraction peaks; Strip Ka2 peaks prior to file import.

SIeve+ Search/Match Procedure

4

SIeve+ User Data Input

Frequently Used Icons

SIeve+ Miscellaneous Options

Frequently Used Icons

7. Sleve+ Preference:
Methods and Criteria window
Search/Match error margin
Wavelength specification
GOM limit specification
Hanawalt/Fink/Long8 selection
Show/Hide All Rotation
Show/Hide Pattern GOM
Show/Hide Similarity Index
D-Spacings/2Theta selection

11. Accept Phase Comparison between the

🙀 Preferences	
Help	
General 🔕 Search ≶ PDF Card 🕂 Simulated Profile E	lectron 🔘 Ring Pattern 🤍 SIeve+
Search	
Search Method: Hanawalt Fink Long8	Max Rotations: 8 💌
Search Window: 0.15 • °	Match Window: 0.15 🔻 °
Lowest Allowable GOM: 2000 🔻	Weight d-Spacings
Wavelength Cu Ka1 1.54056Â ▼	
Display	Matches Fields Ordering
 Show All Rotations Show Pattern GOM Show Similarity Index Lines Table: d-Spacings 	GOM PDF # QM Status Coords Compound Name Chemical Formula D1 D2
	D3 ~
OK Cancel Apply Re	eset Page Reset All

ſ	Phases (2)									
	1	#	*	PDF #	Compound Name	I Ratio	I %	I/Ic		
		1	1	04-007-9627	Zinc Oxide	1.1	80	5.11		
		2		04-005-4213	Aluminum Oxide	0.27	20	1.02		

user data and reference data continues after "accepting" the matched phase $_6$

SIeve+ Phases Table – Multiphase Hit List

Matches Filter: Combine the chemical, physical, and crystallographic property from the previous search with the d-spacings/intensity search results.

河 Matches Filter	
Past Search Filte	rs
Name	Description Hits
Common Filters	
Brimary Patterne	Mineral Belated II Common Phases
	Apply Filter Don't Apply Filter

Phases (3)										
@	#	*	PDF #	Compound Name	I Ratio	I %	I/Ic			
	1	-	04-007-9627	Zinc Oxide	1.1	49	5.11			
	2	\checkmark	04-005-4213	Aluminum Oxide	0.27	12	1.02			
	3		04-002-5299	Calcium Fluoride	0.89	39	3.84			

Three matched referenced patterns from the PDF database:

•The mixed phases contain Zinc Oxide, Aluminum Oxide, and Calcium Fluoride •Sum (intensities) of matched peaks for reference pattern 04-007-9627/ Sum (intensities) of matched peaks for unknown mixed phase = 1.1 •(1.1 /(1.1+0.27+0.89)) * 100 = 49 •I/Ic: reported reference intensity ratio in PDF database for 50/50 weight percent for [Reference Pattern]/Corundum

SIeve+ Lines Table - Phase Comparison

d-spacings/Intensities of Multi-phases and those of reference patterns comparison table:

1st & 2nd columns: Experimental data.

3rd & 4th columns: First matched reference pattern data.

5th & 6th columns: Second matched reference pattern data.

7th & 8th columns: Third matched reference pattern data.

🛅 Diffra	action	Patterns						
Ex d 🐣	Ex I	P1 d	P1 I	P2 d	P2 I	P3 d	P3 I	
3.47551	13			3.476710	64			
3.15138	82					3.153050	98	
2.81186	58	2.812850	58					
2.60078	42	2.602000	45					
2.54880	23			2.548790	100			
2.47398	100	2.474510	100					
2.37763	9			2.377000	47			
2.08383	24			2.083380	98			
1.93049	89					1.930840	100	
1.92175	4							=
1.90973	23	1.910090	23					-
1.73900	11			1.738350	49			
1.64662	27					1.646630	30	
1.62391	35	1.624000	31					
1.60066	23			1.600060	94			
1.47645	30	1.476480	26					
1.40671	6	1.406430	4					
1.40377	8			1.403160	37			
1.37777	26	1.377680	22					
1.37324	14			1.372360	56			
1.36533	10					1.365310	10	
1.35777	12	1.357720	10					
1.30105	2	1.301000	2					
1.25308	8					1.252890	9	
1.23833	6	1.237250	3	1.238110	16			
1.23352	2			1.233150	8			
1.11489	14					1.114770	15	
1.09266	8	1.092470	6					
1.06326	3	1.063160	2					Ψ.

SIeve+ Case-1

Objective: Search for reference patterns in the PDF database to match mixed phase peaks in a user file

SIeve+ Case-1

Interpretation of matched results

Sleve+ - Session_7_4_5.xml											
File Edit Matches Phases Lines Help											
🖹 🤪 😓 🍃 📝 🕲 🥪 🖘 🛩 🗶 🛃 🔍											
Matches (133 of 6,489)											
GOM Pat. GOM PDF # QM Status Coo Compound Name Chemical	Formula D1	D2	D3	D4	D5	D6	D7	D8	I/Ic	Rot. #	
4368 693 00-029-1758 Ο P β-Lactose C12 H22 O11	4.260000	4.670000	4.310000	8.500000	3.500000	4.470000	3.620000	2.825000		1	A
4083 389 00-040-1844 I P DL-2-Amino-3-phospho C3 H8 N O5 F	4.260000	8.510000	3.440000	4.810000	4.150000	4.490000	5.890000	4.590000		1	
4060 429 00-060-1496 R P (E)-Ethyl 1-(4-bromoph C31 H23 Br C	I N3 O2 S 3.718660	3.484900	4.131640	7.406130	3.350860	3.495670	3.360790	4.482550	0.31	6	
4002 315 00-041-1950 O P Bis(4-phenyl-3-thiosemi C14 H18 N8 N	li O6 S2 3.760000	4.300000	4.610000	5.740000	11.600000	3.290000	3.560000	2.250000		5	
3814 283 00-059-1462 O P Sertraline malonate C20 H21 Cl2	N O4 4.313390	3.756370	4.161030	6.201980	5.141960	3.918080	8.410220	5.244380		2	–
Image: Watches Filter Filter Description Image: Select [Subfile/Subclass (Pharmaceutical)]											
Experiment Search Line(s): 4.261 A D1 Range: 4.231 - 4.291 Å Rotation: AI Preferences Search Method: Hanawalt Wavelength: Cu Kol 1.54056Å Search Window: 0.15 ° Lowest Allowable GOM: 2000 Veight d-Spacings Phases (2) Ill V 00-022-1728 Ibuprofen 0.500 133 Ill V 00-022-1788 β-Lactose 1.125 67											
						2	0				

 Δ = window * d / tan(arcsin(λ / (2 * d)))

A Match: reference d-spacing <= experimental d-spacing +/- Δ **Red**: matched lines; **Black**: non-matched lines; **Purple**: overlapped lines Goodness of Match (GOM):

GOM (each line) = (1 - (line error / Δ)) * (1 - (line error / Δ)) * 1000 GOM (Final Weighted) = (D1 GOM * 3) + (D2 GOM * 2) + (D3 GOM) + (D4 GOM * 0.4) + (D5 GOM * 0.4) + (D6 GOM * 0.4) + (D7 GOM * 0.4) + (D8 GOM * 0.4)

If a suspected reference pattern is not in the "Matches" table, users can use the new option "Add PDF # " under the "Matches" tab to manually add the pattern to the "Matches" table.

SIeve+ Case-2

Objective: Find matched patterns in the PDF database with the experimental raw data containing three phases of compounds.

SIeve+ Case-2 Multiphase Search/Match Results

Matches (67 of 19,489) GOM PDF # QM S Co Compound Name Chemical Fo 7268 04-007-9622 P A ✓ Zinc Oxide Zn O 7264 04-007-9622 P A ✓ Zinc Oxide Zn O 6733 01-070-8072 S A ✓ Zinc Oxide Zn O ✓ Matches Filter Filter Description Common Phases Common Phases Experiment Search Line(s): 2.47411 Å D1 Range: 2.464 - 2.484 Å Rotat	rmula D1 D2 D3 D4 D5 D6 D7 D8 2.474510 2.817850 2.602000 1 624000 1.476480 1.910090 1.377650 1.357720 2.474510 2.812850 2.602000 1.624000 1.476480 1.910090 1.377650 1.367720 2.473520 2.811560 2.601500 1.623250 1.476090 1.377160 1.909480 1.367710 III III III Diffraction Patterns Lines (21 of 41)	First matched phase ZnO with highest GOM				
Preferences Search Method: Hanawalt Wavelength: Cu Kol 1.5 Search Window: 0.15 ° Match Window: 0.15 Lowest Allowable GOM: 2000 V Weight d-Spacings Phases (1) PDF # Compound Name I Ratio I % I/IC 1 04-007-9627 Zinc Oxide 11.105 100 5.11	e.000 6.000 4.000 4.000 4.000 1.000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000	Comparison of d- spacings and intensities for the input data and				
GOM PDF # QM S Co Compound Name Chemical Formula II 6802 04-002-6299 I A ✓ Calcium Fluoride Ca F2 1986 6791 04-006-0167 I A ✓ Calcium Fluoride Ca F2 1.986 6762 00-004-0864 S A ✓ Calcium Fluoride Ca F2 1.937 4 Calcium Fluoride Ca F2 1.931	D1 D2 D3 D4 D5 D6 D7 D8 1840 3.153050 1.646530 1.114770 1.365310 1.252890 0.863498 1.051020 0750 3.152910 1.646650 1.114720 1.365250 1.252840 0.863460 1.050970 000 3.153000 1.647000 1.115000 1.366000 1.253000 0.863700 1.051200	reference patterns				
Matches Filter Filter Description Select Experiment Search Line(s): 1.93063 A D1 Range: 1.925 - 1.936 A Rotation: 1 of 8	Matches (36 of 19,489) GOM PDF # QM S Co Compound Name Chemical Formula D1 5346 01-089-7716 S A ✓ Aluminum Oxide Al2 O3 2.08510 5319 00-042-1468 S D ✓ Aluminum Oxide Al2 O3 2.08500 5170 00-005-0712 I A ✓ Aluminum Oxide Al2 O3 2.08500 ✓ III III IIII IIII IIII IIII	D2 D3 D4 D5 30 2.550680 1.601280 3.479670 1.373660 30 2.551000 1.601400 3.480000 1.373800 30 2.552000 1.601400 3.479000 1.374000				
Preferences Search Method: Hanawalt Wavelength: Cu Kol 1.54056Å	Vatches Filter Filter Description Select Common Phases					
Search Window: 0.15 ° Match Window: 0.15 ° Lowest Allowable GOM: 2000 Veight d-Spacings Phases (2)	Experiment Search Line(s): 2.08407 V Å D1 Range: 2.077 - 2.091 Å Rotation: 1 of 8	Diffraction Patterns Lines (41 of 41)				
Image: 1 ✓ PDF # Compound Name I Ratio I % I/Ic 1 ✓ 04-007-9627 Zinc Oxide 1.105 55 5.11 2 04-002-5299 Calcium Fluoride 0.887 45 3.84	Preferences Search Method: Hanawalt Wavelength: Cu Kol 1.54056Å Search Window: 0.15 • Match Window: 0.15 • Lowest Allowable GOM: 2000 ✓ Weight d-Spacings	6,000 5,000 4,000 ⋧ 3,000				
2 nd matched phase CaF2	Phases (3) # ✓ PDF # Compound Name I Ratio I % I/Ic 1 ✓ 04-007-9627 Zinc Oxide 1.105 49 5.11 2 ✓ 04-002-5299 Calcium Fluoride 0.887 39 3.84 3 01-089-7716 Aluminum Oxide 0.255 11 0.99					
3 rd matched phase Al2O3		-1,000				